+ All Categories
Home > Documents > Sinteza AG

Sinteza AG

Date post: 04-Jun-2018
Category:
Upload: constantin-untila
View: 226 times
Download: 0 times
Share this document with a friend
71
Sinteza corpilor cetonici (cetogeneza) Principala cale de metabolizare a acetil CoA   includerea în ciclul Krebs (în condiţiile în care scindarea lipidelor şi a glucidelor este echilibrată)  - “lipidele ard în flacăra glucidelor”  În lipsa glucidelor; inaniţie, diabet - OA se utilizează pentru generarea Gl. În lipsa OA, Acetil Co A recurge la formarea corpilor cetonici: acetoacetatul, β-hidrohibutiratul şi acetona Sinteza lor are loc în ficat, dar se utilizează de ţesuturile periferice  Au rol energetic (muşchiul cardiac, stratul cortical al rinichilor)
Transcript

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 1/71

Sinteza corpilor cetonici

(cetogeneza)

Principala cale de metabolizare a acetil CoA –  includerea în ciclul Krebs (în condiţiile în care scindarealipidelor şi a glucidelor este echilibrată) - “lipidele ard înflacăra glucidelor” 

În lipsa glucidelor; inaniţie, diabet - OA se utilizeazăpentru generarea Gl. În lipsa OA, Acetil Co A recurge la formarea corpilor

cetonici: acetoacetatul, β-hidrohibutiratul şiacetona

Sinteza lor are loc în ficat, dar se utilizează de ţesuturileperiferice

 Au rol energetic (muşchiul cardiac, stratul cortical alrinichilor)

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 2/71

 

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 3/71

cetogeneza

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 4/71

Utilizarea corpilor cetonici

 Acetoacetatul –  2 mol de acetilCoA, utilizate ulterior în ciclulKrebs (23 ATP)

 A doua cale de activare aacetoacetatului poate fi:

 Acetona:1. pînă la propandiol (CH3-CHOH-

CH2OH) , scindat la fragmente acetil şiformil

2.  Transformată în piruvat (prin hidroxilaredublă) 

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 5/71

Cetonemie, cetonurie

Cetonemie- mărirea c% de corpi cetonici însînge Cetonurie –  apariţia CC în urină 

Diete bogate în lipide, sărace în glucide; inaniţie,diabet, dereglări gastrointestinale la copii saugravide; glucozurie renală 

Eliminarea hidroxibutiratului şi acetoacetatuluidin organism (fiind anioni la excreţie) conduce lapierderea de cationi –  Na- rezultă cetoacidoza 

Pierderea H2O –  dehidratarea organismului

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 6/71

 

Biosinteza lipidelor

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 7/71

Obiectivele: Biosintaza acizilor graşi: 1. saturaţi cu număr par de atomi de carbon; 2. nesaturaţi cu număr par de atomi de carbon; 3. saturaţi cu număr impar de atomi de carbon.    Enzimele, coenzimele, reglarea. Biosinteza TAG: substanţele iniţiale, enzimele şi coenzimele,

reglarea. Biosinteza fosfogliceridelor: substratele, reacţiile parţiale ale I

şi a II căi;

Biosinteza sfingolipidelor: precursorii, reacţiile principale,enzimele, reglarea. Metabolismul colesterolului. Biosinteza colesterolului –  

substratele, etapele, reacţiile parţiale ale I etape (până la acidulmevalonic), enzimele, coenzimele, reglarea. Căile de utilizare şieliminare ale colesterolului.

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 8/71

Sinteza AG

Sinteza AG şi încorporarea lor în Tg constituiemecanismul principal de stocare a excesului deglucide alimentare (Gl nu se mai transformă înglicogen dar în Tg)

Etapele:

Sinteza de novo cu formarea acidului palmitic

Elongarea acidului palmitic

Introducerea de legături duble în AG 

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 9/71

Particularităţile sintezei AG 

 Are loc în citozol E –  acid gras sintetaza –  alcătuită din 8 proteine

(domenii)- 7 sunt enzime, a 8-a –  proteina( purtătoare ) transportatoare de acil -ACP.

 ACP cuprinde 2 grupe SH:1.   – SH furnizat de un rest de cisteinil: SH-Cis2. - SH - fosfopanteteina, ataşată prin leg ătura

fosfat-Ser: SH-Pant Ca iniţiator este acetil CoA (rezultat din

glicoliză), pe cînd sursa majoră –  malonil CoA  rolul reducător îi revine NADPH+H 

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 10/71

Sinteza de novo cu formarea acidului

 palmitic

Etapele:

1.  transferul lui Acetil CoA din mitocondrii încitozol

2. Sinteza de malonil CoA

3. Sinteza acidului palmitic

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 11/71

 Transferul lui Acetil CoA din mitocondrii în

citozol

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 12/71

Sinteza de malonil CoA

acetil-CoA + HCO3  +  ATP   ADP + Pi + malonil-CoA

E- acetil CoA

Carboxilaza

citrat,

Insulina

 palmitoil CoA

Glucagonul

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 13/71

Sinteza acidului palmitic

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 14/71

Sinteza acidului palmitic

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 15/71

Sinteza acidului palmitic

Ciclu de reacţii este reluat: butiril+ACP secondensează cu malonil+ACP- formînd în final C6-acil ACP.

Catena AG creşte pînă la formarea palmitil-S-ACP

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 16/71

R eacţia sumară: 

 Acetil-ACP+7 malonil-CoA +14 NADPH+H  

Palmitat +7CO2+14NADP + + 8HSCoA+6H2O

deoarece malonil CoA se sintetizează din acetilCoA:8 acetil-CoA + 14 NADPH +H + + 7  ATP  

 palmitate+ 14 

NADP

+ 8HSCoA  + 7 

 ADP 

Pi 

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 17/71

Elongarea AG

Localizată: reticulul endoplasmatic   AG este activat

La acidul preexistent (palmitil CoA) se ataşează malonil CoA  

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 18/71

Biosinteza AG nesaturaţi 

Pot fi sintetizaţi AC mononesaturaţi. Introducerea unei duble legături are locprin acţiunea unei monooxigenaze (introduce gruparea hidroxil), urmată dedeshidratare

 Acidul linoleic şi linolenic sunt esenţiali (exogen)   Acidul linoleic se transformă în acidul arahidonic conform reacţiilor 

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 19/71

 

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 20/71

Sinteza TAG

2 căi: 1. calea monoacilglicerolului: are loc în peretele intestinal

(enterocite)din produşi absorbiţi (resinteza lipidelor). 2. calea glicerolfosfatului: în toate ţesuturile (activă: ţesutul adipos

şi ficat)   AG sunt incorporaţi în TAG sub formă activă de acilCoA: R-COOH + ATP + HS-CoA +H2O  R-CO~SCoA  + AMP + 2 Pi

E- acil Co A sintetaza

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 21/71

1. calea monoacilglicerolului

 TG împreună cu FL,Col, proteine suntincorparate în CM şi secretaţi mai departe în

 vasele limfatice.

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 22/71

calea glicerolfosfatului

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 23/71

originea glicerol fosfatului

În ficat:

În ţesut adipos, ficat 

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 24/71

Sinteza glicerofosfolipidelor 2 căî de sinteză: 

Sinteza de novo - utilizează ca intermediar comunacidul fosfatidic

Calea de rezervă –  o sinteză din produse formate 

Particularitatea biosintezei FL este participareaprecursorilor în forme active de derivaţi ai citidinfosfatului (CDP) ca CDP-colina, CDP-

etanolamina, CDP-diglicerid.

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 25/71

Sinteza de novo  

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 26/71

 

2 i t di d f t

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 27/71

2. sinteza din produse formate

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 28/71

Sinteza sfingolipidelor

Se formează din palmitoil CoA şi Ser 

Sfingozina liberă se formează din ceramidă

Sinteza are loc pe suprafaţa citozolică amembranelor reticulului endoplasmatic

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 29/71

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 30/71

Sinteza sfingolipidelor

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 31/71

Sinteza Colesterolului

Se sintetizează din Acetil-CoA Necesită 18 moli de Acetil-CoA şi 18 de ATP  Principalul organ de metabolizare este ficatul, dar are

loc şi în intestin, suprarenale, tegumente   Are loc în 3 etape:1. Sinteza acidului mevalonic2. mevalonatul prin mai multe reacţii - 3∆-izopentenil

pirofosfat. 6 molecule de 3∆-izopentenil pirofosfat –  scualen

3. Scualenul se supuine ciclizării –  lanosterol -- Col

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 32/71

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 33/71

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 34/71

 

H2C

C

CH3

HO

CH2

C-

O O

CH2   OH

H2C

C

CH2   CH2   O P O P O-

O

O-

O

O-

CH3

H2C

C

CH3HO

CH2

C-

O O

CH2   O P O P O-

O

O-

O

O-

CO2

 ATP

 ADP + Pi

2  ATP

2  ADP

mevalonate

5-pyrophosphomevalonate

(2 steps)

isopentenyl pyrophosphate

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 35/71

 

H2C

C

CH2 CH2 O P O P O-

O

O-

O

O-

CH3

H3C

C

CH CH2 O P O P O-

O

O-

O

O-

CH3

isopentenyl pyrophosphate

dimethylallyl pyrophosphate

CH CH2CH3C

CH3

CH CH2CCH2

CH3

CH CH2 O P O P O-

O

O-

O

O-

CCH2

CH3

2

O

  NADP+

O2  H2O

HO

H+

NADPH

NADP+ + 2 PPi

NADPH

2 farnesyl pyrophosphate

squalene 2,3-oxidosqualene lanosterol

O

  NADP+

O2  H2O

HO

H+NADPH

 

squalene 2,3-oxidosqualene lanosterol

HO HO

lanosterol cholesterol

19 steps

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 36/71

 

REGLAREA ŞI

PATOLOGIAMETABOLISMULUI

LIPIDIC 

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 37/71

Obiectivele Metabolismul eicosanoizilor. Căile ciclooxigenazică şi lipooxigenazică ale biosintezei lor.

Inactivarea. Metabolismul vitaminelor liposolubile: sursele alimentare, necesităţile diurne, transformările  Reglarea metabolismului lipidelor la nivelul celulei. Reglarea neurohormonală a metabolismului lipidelor. Rolul lipotropinelor, ACTH, hormonilor

tiroizi, insulinei, glucagonului, glucocorticoizilor şi catecolaminelor.  Relaţiile reciproce dintre metabolismul energetic, glucidic şi lipidic.  Dereglările digestiei şi absorbţiei lipidelor. Steatoreea pancreatică, hepatică şi intestinală.  Dislipidemiile: a) hipolipoproteinemiile familiale –  afecţiunea Tangier, - şi -lipoproteinemia familială;    b) hiperlipoproteinemiile primare şi familiale;    c) hiperlipoproteinemiile secundare (dobândite) –   în diabet zaharat, alcoolism, afecţiuni

ale glandelor endocrine.   Cauze, mecanismele dereglării metabolismului lipidelor, manifestările biochimice.  6. Lipidozele tiszlare:   a) ereditare –  Neimann-Pick, Tay-Sachs, Krabbe, Gaucher, Farber, leucodistrofia

metacromatică, gangliozidoza GM1;    b) dobândite –  obezitate, ateroscleroză, alcoolism.   Cauze, mecanismele dereglării metabolismului lipidelor, manifestările biochimice.  7. A-, hipo- şi hipervitaminozele A, D, E, K –  cauze, manifestări metabolice.  8. Rolul eicosanoizilor în procesele inflamatorii, reacţiile alergice, dereglările fluidităţii

sanguine.

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 38/71

Metabolismul eicosanoizilor

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 39/71

 ATP-dependent carboxylation provides energy input.

 The CO2 is lost later during condensation with thegrowing fatty acid.

 The spontaneous decarboxylation drives the condensationreaction.

H3C C SCoA

O

CH2 C SCoA

O

-OOC

acetyl-CoA

malonyl-CoA

 The input to fatty acidsynthesis is acetyl-CoA ,

 which is carboxylated tomalonyl-CoA .

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 40/71

HCO3  +  ATP + acetyl-CoA    ADP + Pi + malonyl-CoA

ll

  Enzyme-biotin  HCO3

- + ATP

  ADP + Pi

  Enzyme-biotin-CO2-

  O

 CH3-C-SCoA

  acetyl-CoA  O

 -O2C-CH2-C-SCoA

  malonyl-CoA

ll

Enzyme-biotin

1

2

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 41/71

Biotin is linked to the enzyme by an amide bond between

the terminal carboxyl of the biotin side chain and thee-amino group of a lysine residue. The combined biotin and lysine side chains act as a longflexible arm that allows the biotin ring to translocate

between the 2 active sites.

CHCH

H2C

S

CH

NH

C

N

O

(CH2)4 C NH (CH2)4 CH

CO

NH

O

C

O

O-

Carboxybiotin lysineresidue

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 42/71

 Acetyl-CoA Carboxylase, which converts acetyl-CoA tomalonyl-CoA, is the committed step of the fatty acidsynthesis pathway.

 The mammalian enzyme is regulated, by

phosphorylation

allosteric control by local metabolites.Conformational changes associated with regulation:

In the active conformation, Acetyl-CoA Carboxylase

associates to form multimeric filamentous complexes.  Transition to the inactive conformation is associated

 with dissociation to yield the monomeric form of theenzyme (protomer).

Phosphorylated protomer of

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 43/71

 The decreased production of malonyl-CoA  preventsenergy-utilizing fatty acid synthesis when cellular energystores are depleted. (AMP is abundant only when ATP has

been extensively dephosphorylated.)

AMP-Activated

Kinase catalyzes

 phosphorylation

of Acetyl-CoACarboxylase,

causing

inhibition.

Phosphorylated protomer of

Acetyl-CoA Carboxylase (inactive) 

Dephosphorylated Polymer ofAcetyl-CoA Carboxylase (active)

Citrate

Dephosphorylated,

e.g., by insulin-

activated Protein

Phosphatase

Palmitoyl-CoA

Phosphorylated, e.g., via

AMP-activated Kinase

when cellular stress or

exercise depletes ATP.

Regulation of Acetyl-CoA Carboxylase

AMP A i d Ki

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 44/71

 When AMP is high (ATP low), malonyl-CoA production isdiminished, releasing fatty acid oxidation from inhibition.

 This will lead to increased ATP production.

 AMP-Activated Kinase has a significant role evenin tissues (e.g., cardiac

muscle) that do notsignificantly synthesize fattyacids.

In such tissues malonyl-CoA , produced via oneisoform of Acetyl-CoACarboxylase, functionsmainly as an inhibitor offatty acid oxidation.

H3C C SCoA

O

CH2 C SCoA

O

-OOC

acetyl-CoA

malonyl-CoA

ATP + HCO3- 

ADP + Pi 

Acetyl-CoACarboxylase

(inhibited by

AMP-ActivatedKinase)

O

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 45/71

 A cAMP cascade, activated by glucagon & epinephrine whenblood glucose is low, may also result in phosphorylation of

 Acetyl-CoA Carboxylase via cAMP-Dependent Protein

Kinase. With Acetyl-CoA Carboxylase inhibited, acetyl-CoA remainsavailable for synthesis of ketone bodies, the alternativemetabolic fuel used when blood glucose is low.

H3C C SCoA

O

CH2 C SCoA

O

-OOC

acetyl-CoA

malonyl-CoA

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 46/71

 The antagonistic effect of insulin, produced when bloodglucose is high, is attributed to activation of ProteinPhosphatase.

Phosphorylated protomer of

Acetyl-CoA Carboxylase (inactive) 

Dephosphorylated Polymer ofAcetyl-CoA Carboxylase (active)

Citrate

Dephosphorylated,

e.g., by insulin-

activated Protein

Phosphatase

Palmitoyl-CoAPhosphorylated, e.g., viaAMP-activated Kinase

when cellular stress or

exercise depletes ATP.

Regulation of Acetyl-CoA Carboxylase

Phosphorylated protomer of

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 47/71

Palmitoyl-CoA  (product of Fatty Acid Synthase) promotesthe inactive conformation, diminishing production ofmalonyl-CoA, the precursor of fatty acid synthesis.

 This is an example of feedback inhibition.

Regulation of

Acetyl-CoA

Carboxylase by

local metabolites:

Phosphorylated protomer of

Acetyl-CoA Carboxylase (inactive) 

Dephosphorylated Polymer ofAcetyl-CoA Carboxylase (active)

Citrate

Dephosphorylated,

e.g., by insulin-

activated Protein

Phosphatase

Palmitoyl-CoA

Phosphorylated, e.g., via

AMP-activated Kinase

when cellular stress or

exercise depletes ATP.

Regulation of Acetyl-CoA Carboxylase

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 48/71

[Citrate] is high when there is adequate acetyl-CoA enteringKrebs Cycle.

Excess acetyl-CoA is then converted via malonyl-CoA tofatty acids for storage.

Glucose-6-phosphatase

glucose-6-P glucose

Gluconeogenesis  Glycolysis

 pyruvatefatty acids

acetyl CoA ketone bodies

cholesterol

oxaloacetate citrate

Krebs Cycle

Citrate 

allostericallyactivates Acetyl-CoA Carboxylase.

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 49/71

Fatty acid synthesis from acetyl-CoA & malonyl-CoAoccurs by a series of reactions that are:

in bacteria catalyzed by 6 different enzymes plus aseparate acyl carrier protein (ACP)

in mammals catalyzed by individual domains of a very

large polypeptide that includes an ACP domain.Evolution of the mammalian Fatty Acid Synthaseapparently has involved gene fusion.

NADPH serves as electron donor in the two reactionsinvolving substrate reduction.

 The NADPH is produced mainly by the Pentose PhosphatePathway.

SH Coenzyme AH

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 50/71

Fatty AcidSynthaseprosthetic groups:

the thiol of the side-chain of a cysteine residue of CondensingEnzyme domain.

the thiol of phosphopantetheine,equivalent in structureto part of coenzyme A.

N

N  N

N

NH2

O

OHO

HH

H

CH2

H

OPOPOH2C

O O

P

O

O

C

C

C

NH

CH2

CH2

C

NH

CH3H3C

HHO

O

CH2

CH2

O

-mercaptoethylamine

 pantothenate

ADP-3'- phosphate

y

 phosphopantetheine

H3N+ C COO

-

CH2

SH

cysteine

SHh h t th i

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 51/71

Phosphopantetheine (Pant) is covalently linked

 via a phosphate ester to aserine OH of the acylcarrier protein domainof Fatty Acid Synthase.

 The long flexible arm of phosphopantetheinehelps its thiol to move

from one active site toanother within thecomplex. OPOH2C

OC

C

C

NH

CH2

CH2

C

NH

CH3H3C

HHO

O

CH2

CH2

O

CH2   CH

NH

C O

-mercaptoethylamine

 pantothenate

serineresidue

 phosphopantetheine

of acyl carrier protein

 phosphate

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 52/71

 As each of the substrates acetyl-CoA & malonyl-CoA bindto the complex, the initial attacking group is the oxygen ofa serine hydroxyl group of the Malonyl/acetyl-CoA

 Transacylase enzyme domain.

Each acetyl or malonyl moiety is transiently in ester linkageto this serine hydroxyl, before being transferred into

thioester linkage with the phosphopantetheine thiol ofthe acyl carrier protein (ACP) domain.

 Acetate is subsequently transferred to a cysteine thiol ofthe Condensing Enzyme domain.

Condensing Malonyl/acetyl-CoA Dehydratase Enoyl -Ketoacyl ACP ThioesteraseEnzyme (Cys) Transacylase (Ser ) Reductase Reductase (Pant)

 N- -C

Order of domains in primary structure of mammalian Fatty Acid Synthase

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 53/71

NADPH NADP+NADPH NADP

+ H2O

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 54/71

4.  The -ketone is reduced to an alcohol by e- transferfrom NADPH.

5. Dehydration yields a trans double bond.

6. Reduction by NADPH yields a saturated chain.

Pant

S

Cys

SH

C

CH2

C

O

CH3

O

Pant

S

Cys

SH

C

CH2

HC

O

CH3

Pant

S

Cys

SH

Pant

S

Cys

SH

C

CH

HC

O

CH3

C

CH2

CH2

O

CH3

OH

4 5 6

4 -Ketoacyl-ACP Reductase

5 -Hydroxyacyl-ACP Dehydratase

6 Enoyl-ACP Reductase

Malonyl S CoA HS CoA

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 55/71

Following transfer of the growing fatty acid fromphosphopantetheine to the Condensing Enzyme's cysteinesulfhydryl, the cycle begins again, with another malonyl-

CoA.

Pant

S

Cys

SH

C

CH2

CH2

O

CH3

Pant

SH

Cys

S

C

CH2

O

CH2

CH3

Pant

S

Cys

S

C

CH2

O

CH2

CH3

C

CH2

COO-

O

Malonyl-S-CoA HS-CoA

7 2

7 Condensing Enzyme

2 Malonyl/acetyl-CoA-ACP Transacylase (repeat).

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 56/71

Product release: 

 When the fatty acid is 16 carbon atoms long, a Thioesterase domain catalyzes hydrolysis of the thioesterlinking the fatty acid to phosphopantetheine.

 The 16-C saturated fatty acid  palmitate is the finalproduct of the Fatty Acid Synthase complex.

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 57/71

Condensing Malonyl/acetyl-CoA Dehydratase Enoyl -Ketoacyl ACP Thioesterase(C ) l (S ) d d ( )

N- -C

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 58/71

 The solved structure does not resolve the position of ACP & Thioesterase domains, predicted from primary structureto be near -Ketoacyl Reductase (KR) domains of lateral"arms" of the complex.

Enzyme (Cys) Transacylase (Ser ) Reductase Reductase (Pant) N -C

Order of domains in primary structure of mammalian Fatty Acid Synthase

KR KR

DH DH

KS KS

MAT MAT

ER ER

Arrangement of domains

in Fatty Acid Synthase

“arm” 

“leg” 

 These domains may betoo flexible to be resolved.KR = -Ketoacyl Reductase;ER = Enoyl Reductase;

DH = Dehydratase;KS = -Ketoacyl Synthase(Condensing Enzyme); MAT= Malonyl/Acetyl-CoA

 Transacylase.

 KR KR

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 59/71

KR KR

DH DH

KS KS

MAT MAT

ER ER

Arrangement of domainsin Fatty Acid Synthase

“arm” 

“leg” 

Fatty Acid Synthase complex is somewhat asymmetric.

 There is evidence for conformational changes relating to

catalysis.Protein flexibility may facilitate transfer of ACP-attachedreaction intermediates among the several active sites in each

half of the complex.

For images see:

website (ETH Zurich)

website (Asturias lab,

Scripps)

article (Maier, Jenni & Ban;

requires subscription to

Science).

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 60/71

Explore with Chime the structure of the E. coli -

Ketoacyl-ACP Synthase III, equivalent to thedomains of the mammalian Fatty Acid Synthasethat catalyze the initial acetylation andcondensation reactions.

Oxidation & Fatty Acid Synthesis

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 61/71

 -Oxidation & Fatty Acid SynthesisCompared

Oxidation Pathway  Fatty Acid Synthesis 

pathway location  mitochondrial matrix cytosol

acyl carriers(thiols)

Coenzyme-A  phosphopantetheine(ACP) & cysteine

acceptors/donor  FAD & NAD+  NADPH

-OH intermediate  L D

2-C product/donor  acetyl-CoAmalonyl-CoA

(& acetyl-CoA)

F A id S h i i i ll l d

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 62/71

Fatty Acid Synthase is transcriptionally regulated.In liver:

Insulin, a hormone produced when blood glucose ishigh, stimulates Fatty Acid Synthase expression. Thus excess glucose is stored as fat. Transcription factors that that mediate the stimulatory

effect of insulin include USFs (upstream stimulatoryfactors) and SREBP-1.SREBPs (sterol response element binding proteins)

 were first identified for their regulation of cholesterol

synthesis. Polyunsaturated fatty acids diminish transcription of

the Fatty Acid Synthase gene in liver cells, bysuppressing production of SREBPs.

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 63/71

In fat cells:

Expression of SREBP-1 and of Fatty Acid Synthase isinhibited by leptin, a hormone that has a role in regulatingfood intake and fat metabolism.

Leptin is produced by fat cells in response to excess fatstorage.

Leptin regulates body weight by decreasing food intake,

increasing energy expenditure, and inhibiting fatty acidsynthesis.

Elongation beyond the 16-C length of the palmitate product

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 64/71

Elongation beyond the 16-C length of the palmitate productof Fatty Acid Synthase occurs in mitochondria andendoplasmic reticulum (ER).

Fatty acid elongation within mitochondria involves the-oxidation pathway running in reverse, but NADPH

serves as electron donor for the final reduction step.

Polyunsaturated fatty acids esterified to CoA aresubstrates for the ER elongation machinery, which usesmalonyl-CoA as donor of 2-carbon units.

 The reaction sequence is similar to Fatty Acid Synthase

but individual steps are catalyzed by separate proteins. A family of enzymes designated Fatty Acid Elongases catalyze the initial condensation step for elongation of

saturated or polyunsaturated fatty  acids.

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 65/71

Desaturases introduce double bonds at specific

positions in a fatty acid chain.Mammalian cells are unable to produce double bonds atcertain locations, e.g., D12.

 Thus some polyunsaturated fatty acids are dietaryessentials, e.g., linoleic acid, 18:2 cis D9,12 (18 C atomslong, with cis double bonds at carbons 9-10 & 12-13).

C

O

OH

910

oleate 18:1 cis D9 

O

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 66/71

Formation of a double bond in a fatty acid involves thefollowing endoplasmic reticulum membrane proteins in

mammalian cells: NADH-cyt b5 Reductase, a flavoprotein with FAD 

as prosthetic group.

Cytochrome b5, which may be a separate protein or adomain at one end of the desaturase.

Desaturase, with an active site that contains twoiron atoms complexed by histidine residues.

COH

910

oleate 18:1 cis D9 

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 67/71

 The desaturase catalyzes a mixed function oxidation reaction.

 There is a 4-electron reduction of O2  2 H2O as a fattyacid is oxidized to form a double bond.

2e  pass f rom NADH to the desaturase via theFAD-containing reductase & cytochrome b5, the

order of electron transfer being:NADH  FAD  cyt b5  desaturase 

2e  are extracted from the fatty acid as the double

bond is formed.E.g., the overall reaction for desaturation of stearate (18:0)to form oleate (18:1 cis D9 ) is:stearate + NADH + H+ + O2  oleate + NAD+ +

2H2O

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 69/71

 

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 70/71

 

8/13/2019 Sinteza AG

http://slidepdf.com/reader/full/sinteza-ag 71/71

 


Recommended