+ All Categories
Home > Documents > SINTEZA LUCRĂRII · -sistem microrobotic modular cu trei module d) Fig. 1.6 Schema structurală...

SINTEZA LUCRĂRII · -sistem microrobotic modular cu trei module d) Fig. 1.6 Schema structurală...

Date post: 31-Jan-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
41
1 Universitatea Tehnică din Cluj-Napoca Facultatea de Mecanică Catedra: Mecanisme, Mecanică Fină şi Mecatronică PROGRAM IDEI ID_1056 Tipul proiectului: Proiect de cercetare exploratorie Contract nr. 85/2007 Planul Naţional de Cercetare, Dezvoltare şi Inovare - PN II MODELAREA, SIMULAREA ŞI REALIZAREA UNOR FAMILII DE SISTEME ROBOTIZATE PENTRU INSPECŢIE ŞI EXPLORARE SINTEZA LUCRĂRII Etapa unică 2010 PROIECTAREA ŞI REALIZAREA UNUI SISTEM MICROROBOTIC DE INSPECŢIE ÎN ŢEVI/EXPLORARE Director de proiect: Conf. Dr. ing. Tătar Mihai Olimpiu Membrii: Şef lucr. dr. ing. Rusu Călin Şef lucr. dr. ing. Teuţan Emil Asist. drd. ing. Besoiu Sorin Asist cercet. drd. ing. Lungu Ion Asist cercet. drd. ing. Aluţei Adrian Asist cercet. drd. Ing. Cirebea Claudiu 2010
Transcript
  • 1

    Universitatea Tehnică din Cluj-Napoca Facultatea de Mecanică Catedra: Mecanisme, Mecanică Fină şi Mecatronică

    PROGRAM IDEI ID_1056 Tipul proiectului: Proiect de cercetare exploratorie

    Contract nr. 85/2007 Planul Naţional de Cercetare, Dezvoltare şi Inovare - PN II

    MODELAREA, SIMULAREA ŞI REALIZAREA UNOR FAMILII DE SISTEME ROBOTIZATE PENTRU INSPECŢIE

    ŞI EXPLORARE

    SINTEZA LUCRĂRII

    Etapa unică 2010 PROIECTAREA ŞI REALIZAREA UNUI SISTEM

    MICROROBOTIC DE INSPECŢIE ÎN ŢEVI/EXPLORARE

    Director de proiect: Conf. Dr. ing. Tătar Mihai Olimpiu

    Membrii: Şef lucr. dr. ing. Rusu Călin Şef lucr. dr. ing. Teuţan Emil Asist. drd. ing. Besoiu Sorin Asist cercet. drd. ing. Lungu Ion Asist cercet. drd. ing. Aluţei Adrian Asist cercet. drd. Ing. Cirebea Claudiu

    2010

  • INTRODUCERE Inspecţia ţevilor se face pentru determinarea defectelor ce pot să apară în interiorul ţevilor, cum

    ar fi îmbătrânirea, ciupirea, coroziunea, crăpăturile, acumulările de material sau distrugerile de natură mecanică, ce pot cauza daune locale costisitoare. Prin utilizarea inspecţiei vizuale a interiorului ţevii se pot localiza eventualele defecte şi astfel procesul de înlocuire a tronsoanelor defecte va fi unul eficient.

    1. SISTEM MICROROBOTIC MODULAR – GAMA DE DIAMETRE Φ50-70mm În cadrul proiectului s-au modelat, simulat, proiectat şi realizat mai multe module, trei sisteme

    modulare robotizate, pentru inspecţie şi explorare, un sistem microrobotic modular de inspecţie şi explorare şi un microrobot de inspecţie în ţevi.

    1.1. Modul activ pentru sistemul microrobotic modular Modulul activ proiectat şi realizat, este format din două mecanisme patrulater dispuse în două

    plane paralele şi trei roţi duble: roata conducătoare şi respectiv roţile conduse/sprijin (Fig. 1.1), (Anexa 3). Modulul motor propus poate fi utilizat singur ca microrobot sau împreună cu modulele pasive, în componenţa unui sistem microrobotic folosit pentru inspecţie şi explorare.

    1 2

    34A

    B C

    DO3=E

    O1O2

    Z1Z2

    Z3

    A1

    D1 E1

    h2

    h1

    W t

    w3

    w1

    Fig. 1.1 Schema structurală şi modelul 3D a modulului motor

    Elementele componente din figura 1.2 sunt: 1 – roată condusă 2 – distanţier; 3 – arc elicoidal; 4 –

    element susţinere 1; 5 – element susţinere 2; 6 – motor; 7 – roată dinţată 1 ( ); 8 – roată conducătoare; 9 – element susţinere angrenaj; 10 – roată dinţată 2 ( ); 11 – roată dinţată 3 ( ).

    1z

    2z 3z

    a) b)

    Fig. 1.2 Elementele componente ale modulului motor Fig. 1.3. Modelarea 3D şi fotografia modulului motor cu dispozitiv de susţinere a camerei video

    2

  • 1.2.Module pasive pentru sistemul microrobotic În scopul realizării unui microsistem autonom au fost proiectate şi realizate cele două module

    pasive ce vor fi prezentate în continuare.

    1.2.1. Modulul pasiv suport pentru acumulator

    Modulul pasiv suport pentru acumulator a fost proiectat special pentru transportul sursei de energie în cadrul sistemului microrobotic de inspecţie şi explorare. Acest modul este compus din şase elemente de susţinere a roţilor dispuse la 120º în jurul axei longitudinale de fiecare parte a modulului (Anexa 4).

    Menţinerea contactului dintre roţi şi peretele ţevii se poate realiza utilizând arcuri de torsiune montate în cuplele de rotaţie a elemntelor de susţine a roţilor sau prin utilizarea arcuri elocoidale (Fig. 1.4). Corpul modulului este realizat din aluminiu iar elementele cu furcă de susţinere a roţilor din alamă. Roţile sunt realizate din aluminiu şi sunt prevăzute cu inele din cauciuc având raza de 13,5 mm. Masa modulului fără acumulator este de 66 grame. Acest modul are dimensiunea interioară a carcasei cilindrice de 28 x 50 [mm]. Având o structură adaptabilă, modulul pasiv poate fi utilizat în ţevi cu diametrul cuprins între 50 şi 70 [mm]. Soluţia propusă şi realizată ce utilizează arcuri elocoidale se prezintă în figura 1.4 d.

    B D

    Wt

    A

    O1

    O2 O4

    O3

    C

    Acumulator

    a) b) c)

    d)

    Fig. 1.4 Modulul pasiv suport pentru acumulator a) Modelul 3D b) Schema structurală. Modulul pasiv în interiorul ţevii c) Fotografia modulului pasiv d)

    1.2.2. Modulul pasiv suport pentru electronice În figurile următoare sunt prezentate modelele 3D, schema cinematică şi fotografia modulului

    pasiv utilizat la transportul plăcilor electronice. Soluţiile contructive propuse utilizează arcuri elicoidale (Fig. 1.5) sau arcuri de torsiune montate în cuplele de rotaţie a elementelor pentru susţinerea roţilor. Soluţia propusă şi realizată ce utilizează arcuri elicoidale se prezintă în figura 1.5 d.

    Elementele de susţinere a roţilor sunt dispuse câte două la 120º în jurul axei longitudinale şi sunt realizate din alamă (Anexa 5). Carcasa cilindrică are dimensiunea interioară 35 x 50 [mm] şi este realizată din aluminiu. Roţile sunt realizate din aluminiu, cu raza de 14,5 mm şi sunt prevăzute cu inele de cauciuc. Masa modulului fără plăcile electronice este de 93 grame. Structura adaptabilă a modulului pasiv ii permite utilizarea acestuia în ţevi cu diametrul cuprins între 50 şi 70 [mm].

    3

  • B D

    Wt

    A

    O1

    O2 O4

    O3

    C

    a) b) c)

    d)

    Fig. 1.5. Modulul pasiv pentru transport electronice a) Modelul 3D b) Schema structurală. Modulul pasiv în interiorul ţevii c) Fotografia modulului pasiv d)

    1.3. Sistemul microrobotic modular de inspecţie şi explorare SMMIE I Prin utilizarea modulelor active (motoare) şi a modulelor pasive, descrise anterior, se pot obţine

    sisteme microrobotice modulare cu trei (Anexa 9) şi patru module (Anexa 8), prezentate în figura 1.6.

    -sistem microrobotic modular cu patru module

    B 2 D2

    Wt

    A2

    E1

    G2 H4

    F3

    C2

    Acumulator

    B 3 D3

    A3

    E1

    G2 H4

    F3

    C3 A4

    B4 C4

    D

    P3

    P1P2 w3

    w1

    A1

    B1 C1

    D1O3

    O1O2 w3

    w1

    4

    a)

    b)

    c)

    4

  • -sistem microrobotic modular cu trei module

    d)

    Fig. 1.6 Schema structurală a), modelul CAD b) şi fotografia sistemului microrobotic SMMIE I c,d)

    În figura 1.6 b) notaţiile au următoarea semnificaţie: 1 – modul activ 1; 2 – modul pasiv pentru transport acumulatori; 3 – modul pasiv pentru transport electronice; 4 – modul activ 2.

    2. PROIECTAREA SUBSISTEMULUI DE ACŢIONARE DIN STRUCTURA SISTEMELOR MODULARE ROBOTIZATE PENTRU INSPECŢIE ŞI EXPLORARE

    Sunt modelate şi realizate două module motoare pentru sistemul microrobotic modular (Anexa 3

    şi Anexa 6). Acestea sunt acţionate cu motor de curent continuu cu reductor încorporat (Fig. 2.1).

    a) b)

    Fig. 2.1 Modulele motoare şi dispunerea motoarelor de actionare utilizate Caracteristicile motoarelor utilizate sunt:

    Motor 1: tensiune de operare: 4.8 – 6.0 V; turaţia la ieşire din reductor: 145 rot/min; consum maxim: 50 mA, cuplu la ieşire: 0.3 10-2 Nm Motor 2: tensiune de operare: 6.0 V; turaţia la ieşire din reductor: 200 rot/min; consum maxim: 70 mA; cuplu maxim: 3,24 kgfcm = 0,3178 Nm

    Pentru orientarea camerei se propune un sistem de orientare complex (Anexa 7), care este prezentat în figura 2.2. Acest sistem utilizează pentru acţionare fire din aliaje cu memoria formei NiTi (Nitinol).

    Fig. 2.2 Modelul 3D a dispozitivului de orientare cu AMF pentru camera video

    5

  • Prin utilizarea actuatorilor pe bază de aliaje cu memoria formei (AMF), se înlocuiesc motoarele ce erau necesare pentru orientarea camerei, reducându-se astfel greutatea şi gabaritul acestuia. Pentru generarea lumini dispozitivul de orientare este dotat cu leduri.

    Parametrii electrici de acţionare a unor asemenea actuatori s-au analizat pornind de la proprietatea firelor din aliaj cu memoria formei de a fi activate rezistiv prin efectul Joule. Astfel rezistenţa electrică a firelor Ramf s-a calculat cu relatia (2.1) unde s-a utilizat rezistenţa electrică pe metru Rc din tabelul 2.1.

    1000][mmlR

    R tcamf⋅

    = (2.1)

    Firul din aliaj cu memoria formei utilizat este acţionat folosind tranzistoare Darlington. Calculul circuitului de comandă s-a realizat utilizând relaţiile de mai jos.

    CEamfccal URIRIU +⋅+⋅= 1 , (2.1) unde Ic – curentul prin colectorul tranzistorului T1 care reprezintă curentul recomandat pentru firul

    din aliaj cu memoria formei (tabelul 2.1); Ual – tensiunea de alimentare; R1 – rezistenţa de limitare a curentului (rezistenţă de siguranţă); UCE – tensiunea pe colector emitor în regimul saturat, ce are valoarea de 0,2V.

    Cunoscând valoarea tensiunii de alimentare, a curentului de colector, a tensiunii colector emitor şi rezistenţa electrică a firului putem determina rezistenţa de limitare a curentului.

    c

    amfcCEal

    IRIUU

    R⋅−−

    =1 (2.3)

    Odată valoarea rezistenţei de limitare cunoscută se alege o rezistenţă conform standardelor E6, E12, E24 mai mare decât cea calculată. Se recalculează curentul efectiv ce va trece prin fir (2.4) şi se va dimensiona rezistenţa de limitare din punct de vedere al puterii disipate de aceasta (2.5).

    amf

    CEalef RR

    UUI

    +−

    =1

    (2.4)

    211 efR IRP ⋅= (2.5)

    Mai rămâne de dimensionat rezistenţa R2 în funcţie de tensiunea de comandă Uc aplicată. Folosind din nou legea lui Kirchhof şi ecuaţia de transfer în regim saturat blocat a transistorului T1 obţinem:

    β

    cB

    II = , (2.6)

    unde β este factorul de amplificare al transistorului, iar IB este curentul din baza transistorului ;

    B

    BEcBEBc I

    UURURIU

    −=⇒+⋅= 22 (2.7)

    unde UBE este căderea de tensiune pe bază emitor. Utilizând relaţiile de mai sus s-au calculat rezistenţa de limitare, puterea disipată pe aceasta şi curenţii efectivi pentru toată gama de diametre ale firelor din aliaj cu memoria formei din dotare (tabelul 2.1). Folosirea unor tensiuni de alimentare mici a dus la eliminarea rezistenţei de limitare şi respectiv a puterii disipate pe aceasta.

    S-a notat cu: d – diametrul firului; A – aria sectiunii firului; Rc – rezistenta liniara pe 1000mm; I – curentul prin fir; σamax – tensiunea admisibila maximă a firului; Fef - forta efectivă dezvoltată de fir; Fmax - forţa maximă dezvoltată de fir; Fd – forţa de deformare a firului; l – lungimea firului; f – deplasarea realizată de fir (4%); Ramf – rezistenţa electrică a firului; Pamf – puterea disipată de fir; R1 – rezistenţa de limitare a curentului prin fir; P1 – puterea disipată de rezistenţăş prin fir.

    Lungimea firului utilizat (Fig. 2.3) este de 137,39 mm. Unghiul de înclinare a camerei se poate determina din figura 2.4.

    6

  • Fig. 2.3 Lungimea firului de AMF Fig. 2.4 Unghiul de înclinare a camerei video

    Tabelul 2.1

    r. d [mm] A

    [µm2] Rc

    [Ω/m] I [A] σamax

    [MPa] Fef [N]

    Fmax [N]

    Fd [N]

    Ual [V]

    l [mm]

    f [mm]

    Ramf [Ω]

    Pamf [W]

    R1 [Ω]

    R1ales [Ω]

    P1 [W]

    1 0.037 1075 860 0.03 600 0.20 0.64 0.075 5 138 5.52 118.68 0.100 41.32 47 0.039

    2 0.050 1960 510 0.05 600 0.37 1.18 0.137 5 138 5.52 70.38 0.171 25.62 27 0.066

    3 0.075 4420 200 0.10 600 0.84 2.65 0.309 5 138 5.52 27.60 0.258 20.40 22 0.206

    4 0.100 7850 150 0.18 600 1.49 4.71 0.550 5 138 5.52 20.70 0.631 5.97 6.8 0.207

    5 0.125 12270 70 0.25 600 2.33 7.36 0.859 5 138 5.52 9.66 0.576 9.54 10 0.596

    6 0.150 17700 50 0.40 600 3.36 10.60 1.236 5 138 5.52 6.90 1.001 5.10 5.7 0.827

    7 0.200 31420 31 0.61 600 5.97 18.84 2.198 5 138 5.52 4.28 1.474 3.59 3.9 1.344

    8 0.250 49100 20 1.00 600 9.32 29.44 3.434 5 138 5.52 2.76 2.585 2.04 2.2 2.060

    9 0.300 70700 13 1.75 600 13.42 42.39 4.946 5 138 5.52 1.79 5.295 0.95 1 2.951

    10 0.375 110450 8 2.75 600 20.97 66.23 7.727 5 138 5.52 1.10 9.186 0.64 0.56 4.660

    Obs: R1 – reprezintă valoarea calculată iar R1 ales reprezintă valoarea ce se alege standardizat. Pentru obţinerea orientării camerei video aliajele cu memoria formei vor fi activate simultan câte două.

    Pentru acţionarea firelor din aliaje cu memoria formei se propune pentru utilizarea schemei

    electronice din figura 2.5.

    a) b)

    Fig. 2.5 Modul utilizat pentru acţionarea firelor din AMF a) schema electronică, b) cablajul

    7

  • 3. SISTEMUL DE COMANDĂ ŞI CONTROL Sistemul de comandă şi control este dispus în cazul sistemelor microrobotice de inspecţie şi

    explorare într-un modul pasiv amplasat în zona centrală a sistemului modular. In figura 3.1 este prezentat sistemul microrobotic modular format din patru module: două active (motoare) şi două pasive.

    MODUL MOTOR MODUL PASIV MODUL MOTORARTICULATIEELASTICACUPLA

    CARDANICAMODUL PASIVARTICULATIE

    ELASTICAARTICULATIE

    ELASTICA

    Fig. 3.1 Dispunerea modulelor sistemului microrobotic modular

    Circuit proiectat are la bază microcontrolerul ATmega8 şi funcţionează cu o frecvenţă de ceas de 8MHz obţinută cu ajutorul cuarţului Q1. Condensatorii C4 şi C5 au rolul de amorsare şi stabilizare a oscilaţiilor frecvenţei proprie cuarţului. Microcontrolerul poate fi resetat de la butonul de reset extern. Programarea microcontrolerului precum şi comunicaţia cu PC-ul se realizează utilizând driverul FT232RL (Anexa 1). Alimentarea placii se face prin conectorul JP3 cu o tensiune de 5V (Fig. 3.2).

    Fig. 3.2. Schema electronică pentru sistemul modular microrobotic

    Placa are în componenţă driverul L293DD pentru comanda celor două motoare de curent continu

    din modulele active. Utilizând jumperul JP6 se poate selecta modul de alimentare al driverului – de la sursa de tensiune VCC sau o sursă de tensiune externă, prin intermediul conectorului JP7. Figura 3.3 prezintă forma cablajului pentru circuitul electronic dezvoltat.

    Fig. 3.3 Proiectare în EAGLE şi fotografia circuit electronic realizat (top si bottom)

    Identificarea experimentală a modelului. Proiectarea şi simularea unui controler de tip PID

    Pentru a putea implementa un algoritm de control de tip PID este necesar să se cunoască modelul procesului. O structură des întâlnită în identificarea experimentală a modelelor este structura ARX

    8

  • (AutoRegressive eXogenous). Pentru identificarea experimentală a modelului, s-a realizat standul experimental prezentat în figura 3.4, în care motorul a fost comandat în buclă deschisă.

    Fig. 3.4. Schema bloc a standului experimental Pentru aceasta s-a dezvoltat o aplicaţie în mediul Labview care permite generarea unui semnal aleator pentru comanda turaţiei motorului şi de asemenea citirea, filtrarea şi scalarea tensiunii contraelectromotoare de la bornele motorului. Valoarea acestei tensiuni este direct proporţională cu turaţia motorului iar semnul, oferă informaţii privind direcţia de rotaţie a motorului. Astfel valoarea şi semnul acestei tensiuni au fost folosite pentru a estima raspunsul motorului (sistemului) la semnalul de comandă. În figura 3.5 este prezentată interfaţa grafică a aplicaţiei dezvoltată pentru identificarea modelului sistemului.

    Fig. 3.5. Interfaţa grafică a aplicaţiei pentru indentificarea modelului

    Pentru validarea modelului obţinut s-a dezvoltat o aplicatie ce permite simularea unui sistem de

    control în bucla închisă cu controler PID. Parametrul controlat în acest caz, este viteza de rotaţie a motorului. În figura 3.6 este prezentat răspunsul sistemului având ca referinţă un semnal dreptunghiular (Fig. 3.6a) şi sinusoidal (Fig 3.6 b).

    9

  • a)

    b)

    Fig. 3.6. Răspunsul simulat al sistemului Schemele bloc de funcţionare ale microrobotului şi sistemului microrobotic modular sunt

    prezentate în figura 3.7.

    a) b) c)

    Fig. 3.7. Schemele bloc de functionare utilizând placa CEREBOT II si plăcile dezvoltate

    Interfaţa realizată (Anexa 2) pentru microrobot şi pentru sistemul microrobotic modular este prezentată în figura 3.8.

    a) b) c)

    10Fig. 3.8. Interfaţa în Delphi pentru comanda microrobotului / sistemului microrobotic modular

  • 4. SISTEM MICROROBOTIC MODULAR – GAMA DE DIAMETRE Φ30-50mm

    4.1.Microrobot de inspecţie în ţevi Microrobotul propus se adaptează la diametre cuprinse între 30 mm şi 50 mm. Este construit în jurul unei carcase cilindrice realizată din aluminiu, acţionarea sa se face utilizând un motor de curent continuu cu reductor integrat. Transmiterea mişcării de la motor la roţile motoare se face cu ajutorul angrenajului melc roată-melcată iar menţinerea contactului dintre roţi şi peretele ţevii se realizează cu ajutorul unor arcuri de torsiune montate în cuplele de rotaţie a elementelor de susţinere a roţilor.

    Elementele de susţinere a roţilor sunt dispuse câte două la 1200 în jurul axei longitudinale a microrobotului şi sunt realizate din aluminiu. La extemitatea acestor elemente sunt dispuse câte două roţi din aluminiu având raza de 14,5 mm şi fiind prevazute cu inele de cauciuc. Microrobotul îşi păstrează poziţia de echilibru datorită presiunii exercitate de roţi pe peretele interior al ţevii.

    Microrobotul este acţionat cu un motor de curent continuu cu reductor. Caracteristicile acestuia sunt: tensiune de operare: 6.0 V; turaţie la ieşire din reductor: 320 rot/min; consum maxim: 80 mA; cuplu maxim: 1,8 kgfcm = 0.1765 Nm.

    A

    B O1

    O2

    Z1

    Z2Z3

    W t

    O4

    O3

    MCC

    h2 h1

    C

    D

    a) b)

    c)

    Fig. 4.1. Schema structurală, modelul CAD şi fotografia microrobotului realizat

    4.2. Sistemul microrobotic modular de inspectie şi explorare SMMIE II

    Microrobotul propus (Anexa 10) poate fi utilizat singur sau împreună cu modulele pasive, în componenţa unui sistem microrobotic utilizat pentru inspecţie şi explorare. In acest sens propunem un sistem microrobotic modular ce este prezentat în modelul 3D din figura 4.2.

    Acest sistem microrobotic este format din patru module: două active (motoare) şi două pasive conectate prin utilizarea unor articulaţii elastice. Poate fi utilizat la inspectarea ţevilor cu diametre cuprinse între 30 - 50 [mm] şi are o lungime totală de 350 [mm].

    Fig. 4.2. Modelul 3D al sistemului microrobotic modular SMMIE II

    11

  • 5. REALIZAREA ŞI TESTAREA PROTOTIPURILOR EXPERIMENTALE

    5.1.Sistemul microrobotic modular de inspecţie şi explorare Sistemele microrobotice modulare obţinute prin combinarea modulelor active şi pasive au fost

    testate în ţevi cu diametre diferite din plexiglas. În figurile următoare sunt prezentate imagini de la testarea prototipurilor experimentale (Fig. 5.1).

    a)

    b)

    c)

    12

  • d)

    Fig. 5.1. Testarea sistemului microrobotic modular (a, b) şi a celor două module motoare (c, d)

    5.2. Microrobot de inspecţie în ţevi

    Testarea microrobotului s-a realizat în ţeavă de oţel cu diametrul de 50 mm (Anexa 10). Imagini de la testarea s-a sunt prezentate in Figura 5.2.

    Fig. 5.2 Testarea microrobotului de inspecţie în ţevi

    CONCLUZII

    Echipa de cercetare a modelat, proiectat şi realizat un sistem modular microrobotic de inspecţie şi explorare şi un microrobot de inspecţie in ţevi ce au o structură adaptabilă.

    Sistemul microrobotic se poate obţine prin combinarea modulelor active şi pasive proiectate şi realizate în acestă fază. Poate fi utilizat la inspecţia şi explorarea unor ţevi cu diametre cuprinse între 50 şi 70 [mm]. Microrobotul propus poate fi utilizat la inspecţia unor ţevi cu diametre cuprinse între 30 – 50 mm.

    Conf. Dr. Ing. Tătar Mihai Olimpiu

    13

  • ANEXA 1

  • Programul implementat pe microcontroler în mediul de programare Bascom AVR.

    'frequency $crystal = 8000000 'baud rate $baud = 9600 'intrerrupt for com reception On Urxc Receptie Enable Urxc Enable Interrupts Config Porta.0 = Output Config Porta.1 = Output Dim A As Byte Dim C As Byte Dim X As Word Dim Y As Word Dim M As Word Dim P As Byte Dim Timp As Word Declare Sub Motor1 M = 100 X = 0 Y = 0 P = 0 Do '------------------------------------------------------------------------------ If P = 1 Then 'directie motor 1,2 Porta.0 = 1 'enable motor 1,2 Porta.1 = 1 Timp = X Gosub Stai Porta.1 = 0 M = 100 - X Timp = M Gosub Stai End If '------------------------------------------------------------------------------ If P = 2 Then 'directie motor 1,2 Porta.0 = 0 'enable motor 1,2 Porta.1 = 1 Timp = X Gosub Stai Porta.1 = 0 M = M - X Timp = M Gosub Stai

  • End If '------------------------------------------------------------------------------ If P = 3 Then Porta.0 = 0 Porta.1 = 0 End If '------------------------------------------------------------------------------ Loop '------------------------------------------------------------------------------ Stai: push R24 'scriere registru in stiva push R25 Loadadr Timp , R24 'incarca adresa variabilei Timp in registrul R24 Inceput: nop nop nop nop sbiw r24,1 'substract immediate from word brne INCEPUT 'Branch if Not Equal(salt daca bitul Z este sters) pop r25 'citire registru din stiva pop r24 Return '------------------------------------------------------------------------------ Receptie: A = Inkey() C = A Shift C , Right Shift C , Right Shift C , Right Shift C , Right A = A And $0f Select Case C Case $01 : P = 1 Case $02 : P = 2 Case $03 : P = 3 Case $04 : Call Motor1 End Select Return '------------------------------------------------------------------------------ Sub Motor1: Select Case A Case $00 : X = 1 Case $01 : X = 5 Case $02 : X = 10 Case $03 : X = 15 Case $04 : X = 20 Case $05 : X = 23 Case $06 : X = 25 Case $07 : X = 27 Case $08 : X = 30 Case $09 : X = 53 Case $0a : X = 35 Case $0b : X = 37 Case $0c : X = 40 Case $0d : X = 42 Case $0e : X = 44 Case $0f : X = 46 End Select End Sub Motor1 '------------------------------------------------------------------------------

  • ANEXA 2

  • Program pentru realizarea interfeţei, utilizând mediul de programere Borland Delphi unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, Menus, ComCtrls, ExtCtrls, StdCtrls, Buttons, CPDrv, jpeg; type TForm1 = class(TForm) MainMenu1: TMainMenu; File1: TMenuItem; Exit1: TMenuItem; Help1: TMenuItem; BitBtn1: TBitBtn; BitBtn2: TBitBtn; BitBtn3: TBitBtn; ScrollBar1: TScrollBar; Coma: TCommPortDriver; Com11: TMenuItem; Com21: TMenuItem; Com1: TMenuItem; Help2: TMenuItem; Com41: TMenuItem; Label2: TLabel; Label3: TLabel; Label4: TLabel; Label5: TLabel; Label6: TLabel; Shape1: TShape; Shape2: TShape; Shape3: TShape; Image1: TImage; BitBtn5: TBitBtn; BitBtn6: TBitBtn; Bevel1: TBevel; Bevel2: TBevel; Bevel3: TBevel; Bevel4: TBevel; Bevel5: TBevel; Bevel6: TBevel; Bevel7: TBevel; Bevel8: TBevel; Label7: TLabel; Bevel9: TBevel; Bevel10: TBevel; Bevel11: TBevel; Bevel12: TBevel; Label8: TLabel; Label9: TLabel; Bevel13: TBevel; Bevel14: TBevel; Bevel15: TBevel;

  • Bevel16: TBevel; BitBtn7: TBitBtn; BitBtn8: TBitBtn; Shape4: TShape; ScrollBar2: TScrollBar; Label1: TLabel; Label11: TLabel; ScrollBar4: TScrollBar; Label13: TLabel; Image2: TImage; RadioButton1: TRadioButton; Bevel17: TBevel; Bevel18: TBevel; Bevel19: TBevel; Bevel20: TBevel; Label10: TLabel; RadioButton2: TRadioButton; Label12: TLabel; Image3: TImage; BitBtn4: TBitBtn; Help3: TMenuItem; Com61: TMenuItem; Com81: TMenuItem; N24001: TMenuItem; N96001: TMenuItem; Image4: TImage; Bevel21: TBevel; Bevel22: TBevel; Bevel23: TBevel; Bevel24: TBevel; RadioButton3: TRadioButton; RadioButton4: TRadioButton; procedure BitBtn1Click(Sender: TObject); procedure BitBtn2Click(Sender: TObject); procedure BitBtn3Click(Sender: TObject); procedure Exit1Click(Sender: TObject); procedure ScrollBar1Change(Sender: TObject); procedure BitBtn4Click(Sender: TObject); procedure Com21Click(Sender: TObject); procedure Com11Click(Sender: TObject); procedure Com1Click(Sender: TObject); procedure Com41Click(Sender: TObject); procedure FormClose(Sender: TObject; var Action: TCloseAction); procedure FormCreate(Sender: TObject); procedure Shape4ContextPopup(Sender: TObject; MousePos: TPoint; var Handled: Boolean); procedure Shape5ContextPopup(Sender: TObject; MousePos: TPoint; var Handled: Boolean); procedure Shape6ContextPopup(Sender: TObject; MousePos: TPoint; var Handled: Boolean); procedure BitBtn7Click(Sender: TObject); procedure BitBtn5Click(Sender: TObject);

  • procedure BitBtn6Click(Sender: TObject); procedure RadioButton1Click(Sender: TObject); procedure RadioButton2Click(Sender: TObject); procedure BitBtn8Click(Sender: TObject); procedure N24001Click(Sender: TObject); procedure N96001Click(Sender: TObject); procedure Com61Click(Sender: TObject); procedure Com81Click(Sender: TObject); private { Private declarations } public { Public declarations } end; var Form1: TForm1; {declarare variabile} m,n:byte; v:integer; implementation {$R *.dfm} procedure TForm1.BitBtn1Click(Sender: TObject); begin {setarea culorii corespunzatoare butonului selectat} shape1.Brush.Color:=clblue; shape2.Brush.Color:=clwhite; shape3.Brush.Color:=clwhite; {trimitere semnal pe serial} coma.SendByte($20); end; procedure TForm1.BitBtn2Click(Sender: TObject); begin {setarea culorii corespunzatoare butonului selectat} shape1.Brush.Color:=clwhite; shape2.Brush.Color:=clwhite; shape3.Brush.Color:=clblue; {trimitere semnal pe serial} coma.SendByte($10); end; procedure TForm1.BitBtn3Click(Sender: TObject); begin {setarea culorii corespunzatoare butonului selectat} shape1.Brush.Color:=clwhite; shape2.Brush.Color:=clblue; shape3.Brush.Color:=clwhite; {trimitere semnal pe serial} coma.SendByte($30); end; procedure TForm1.Exit1Click(Sender: TObject); begin form1.Close; end; procedure TForm1.ScrollBar1Change(Sender: TObject);

  • begin M:=scrollbar1.Position; if n=1 then scrollbar2.Position:=m; case M of 0:coma.SendByte($40); 1:coma.SendByte($41); 2:coma.SendByte($42); 3:coma.SendByte($43); 4:coma.SendByte($44); 5:coma.SendByte($45); 6:coma.SendByte($46); 7:coma.SendByte($47); 8:coma.SendByte($48); 9:coma.SendByte($49); end; end; procedure TForm1.BitBtn4Click(Sender: TObject); begin radiobutton1.Checked:=true; radiobutton3.Visible:=false; radiobutton4.Visible:=false; radiobutton1.Visible:=true; radiobutton2.Visible:=true; Image1.Visible:= false; Image2.Visible:= false; Image3.Visible:= true; Bevel4.Top:=8; Bevel4.Left:=40; Bevel4.Width:=537; Bevel4.Height:=9; Bevel2.Top:=208; Bevel2.Left:=40; Bevel2.Width:=537; Bevel2.Height:=9; Bevel1.Top:=16; Bevel1.Left:=568; Bevel1.Width:=9; Bevel1.Height:=193; ScrollBar2.Visible:=true; Label11.Visible:=true; bevel21.Visible:=false; bevel22.Visible:=false; bevel23.Visible:=false; bevel24.Visible:=false; image4.Visible:=false; {setarea baudrate-ului --------------------------------------------} coma.Disconnect; coma.BaudRate:=br2400; coma.Connect; n24001.Checked:=true; n96001.Checked:=false;

  • {setarea portului de comunicatie -----------------------------------} coma.Disconnect; coma.Port:=pnCom6; coma.Connect; com11.Checked:=false; com21.Checked:=false; com1.Checked:=false; com41.Checked:=false; com61.Checked:=true; com81.Checked:=false; end; procedure TForm1.Com21Click(Sender: TObject); begin coma.Disconnect; coma.Port:=pnCom2; coma.Connect; com11.Checked:=false; com21.Checked:=true; com1.Checked:=false; com41.Checked:=false; end; procedure TForm1.Com11Click(Sender: TObject); begin coma.Disconnect; coma.Port:=pnCom1; coma.Connect; com11.Checked:=true; com21.Checked:=false; com1.Checked:=false; com41.Checked:=false; end; procedure TForm1.Com1Click(Sender: TObject); begin coma.Disconnect; coma.Port:=pnCom3; coma.Connect; com11.Checked:=false; com21.Checked:=false; com1.Checked:=true; com41.Checked:=false; end; procedure TForm1.Com41Click(Sender: TObject); begin coma.Disconnect; coma.Port:=pnCom4; coma.Connect; com11.Checked:=false; com21.Checked:=false; com1.Checked:=false; com41.Checked:=true; end; procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);

  • begin coma.Disconnect; end; procedure TForm1.FormCreate(Sender: TObject); begin coma.Connect; radiobutton3.Checked:=true; end; procedure TForm1.Shape4ContextPopup(Sender: TObject; MousePos: TPoint; var Handled: Boolean); begin image1.Visible:=true; end; procedure TForm1.Shape5ContextPopup(Sender: TObject; MousePos: TPoint; var Handled: Boolean); begin image1.Visible:=false; end; procedure TForm1.Shape6ContextPopup(Sender: TObject; MousePos: TPoint; var Handled: Boolean); begin image1.Visible:=false; end; procedure TForm1.BitBtn7Click(Sender: TObject); begin radiobutton3.Visible:=true; radiobutton4.Visible:=true; radiobutton3.Checked:=true; bevel21.Visible:=true; bevel22.Visible:=true; bevel23.Visible:=true; bevel24.Visible:=true; image4.Visible:=true; radiobutton1.Visible:=false; radiobutton2.Visible:=false; Image1.Visible:= true; Image2.Visible:= false; Image3.Visible:= false; Bevel4.Top:=8; Bevel4.Left:=40; Bevel4.Width:=249; Bevel4.Height:=9; Bevel2.Top:=208; Bevel2.Left:=40; Bevel2.Width:=249; Bevel2.Height:=9; Bevel1.Top:=16; Bevel1.Left:=280; Bevel1.Width:=9; Bevel1.Height:=193; ScrollBar2.Visible:=false; Label11.Visible:=false;

  • {setarea baudrate-ului --------------------------------------} coma.Disconnect; coma.BaudRate:=br9600; coma.Connect; n24001.Checked:=false; n96001.Checked:=true; {seatrea portului de comunicatie------------------------------} coma.Disconnect; coma.Port:=pnCom1; coma.Connect; com11.Checked:=true; com21.Checked:=false; com1.Checked:=false; com41.Checked:=false; {-------------------------------------------------------------} end; procedure TForm1.BitBtn5Click(Sender: TObject); begin shape4.Brush.Color:=clyellow; end; procedure TForm1.BitBtn6Click(Sender: TObject); begin shape4.Brush.Color:=clwhite; end; procedure TForm1.RadioButton1Click(Sender: TObject); begin n:=1; end; procedure TForm1.RadioButton2Click(Sender: TObject); begin n:=0; end; procedure TForm1.BitBtn8Click(Sender: TObject); begin radiobutton1.Checked:=true; radiobutton3.Visible:=false; radiobutton4.Visible:=false; bevel21.Visible:=false; bevel22.Visible:=false; bevel23.Visible:=false; bevel24.Visible:=false; image4.Visible:=false; radiobutton1.Visible:=true; radiobutton2.Visible:=true; Image1.Visible:= false; Image2.Visible:= true; Image3.Visible:= false; Bevel4.Top:=8; Bevel4.Left:=40; Bevel4.Width:=537; Bevel4.Height:=9; Bevel2.Top:=208;

  • Bevel2.Left:=40; Bevel2.Width:=537; Bevel2.Height:=9; Bevel1.Top:=16; Bevel1.Left:=568; Bevel1.Width:=9; Bevel1.Height:=193; ScrollBar2.Visible:=true; Label11.Visible:=true; end; procedure TForm1.N24001Click(Sender: TObject); begin coma.Disconnect; coma.BaudRate:=br2400; coma.Connect; n24001.Checked:=true; n96001.Checked:=false; end; procedure TForm1.N96001Click(Sender: TObject); begin coma.Disconnect; coma.BaudRate:=br9600; coma.Connect; n24001.Checked:=false; n96001.Checked:=true; end; procedure TForm1.Com61Click(Sender: TObject); begin coma.Disconnect; coma.Port:=pnCom6; coma.Connect; com11.Checked:=false; com21.Checked:=false; com1.Checked:=false; com41.Checked:=false; com61.Checked:=true; com81.Checked:=false; end; procedure TForm1.Com81Click(Sender: TObject); begin coma.Disconnect; coma.Port:=pnCom8; coma.Connect; com11.Checked:=false; com21.Checked:=false; com1.Checked:=false; com41.Checked:=false; com61.Checked:=false; com81.Checked:=true; end; end.

  • ANEXA 3

  • 20

    24

    22

    19

    23

    21

    25

    33

    0LC35

    1ROBOT I 01-13Roata dintata 113

    12 Janta 2 ROBOT I 01-12 1 1

    2

    3

    4

    5

    6

    2

    1

    1

    1

    1ROBOT I 01-11

    ROBOT I 01-10

    ROBOT I 01-09

    ROBOT I 01-08

    ROBOT I 01-07

    ROBOT I 01-01

    Salice

    ROBOT I 01-03

    ROBOT I 01-04

    ROBOT I 01-05

    STAS 5848/2-88

    Arbore 3

    Piesa 3

    Piesa echilibrare

    11

    10

    9

    Arbore 2

    Piesa 2

    Siguranta tip E

    Piesa 1

    Arc elicoidal

    Arbore 1

    Anvelopa

    Janta 1

    Nr.desen sau STAS Buc. MaterialDenumireaNr.

    8

    7

    10

    4

    1

    2

    6

    2

    Format: A2

    Scara: 2:1

    VerificatDesenat Echipa ID1056

    ROBOT INSPECTIE I

    ROBOT I 01-00

    UNIVERSITATEA TEHNICA CLUJ-NAPOCA

    Observatii

    Toade d

    reptu

    rile a

    supra

    lui sunt re

    zervate

    Acest d

    ese

    n a

    partine e

    xclusiv U

    TC-N

    23 Bolt filetat ROBOT I 01-23 1

    1

    1

    1

    1

    STAS 4845-78

    ROBOT I 01-20

    Robe

    ROBOT I 01-18

    Piulita M2

    Surub M2x4

    22

    21

    20

    Motor

    Piesa prindere

    19

    18

    14

    15 Roata dintata 3

    Roata dintata 2

    16

    17

    Surub M1.6

    Bolt

    ROBOT I 01-14

    ROBOT I 01-15

    STAS 4845-78

    ROBOT I 01-17 1

    2

    1

    1

    Piesa 4

    1

    STAS 4071-80

    1

    2

    STAS 4845-78

    ROBOT I 01-25Piesa 5

    Surub M124

    25

    Tatar Mihai Olimpiu

    OLC45

    STAS 880-80

    STAS 198/2-81

    Cauciuc

    CuAl10MnT

    STAS 880-66OLC25STAS 795-71ARC 1

    STAS 500-680L37

    STAS 880-66OLC25

    STAS 198/2-81CuAl10MnT

    STAS 199/2-86CuZn31Si

    STAS 880-66OLC25

    STAS 500-680L37

    STAS 199/2-86CuZn31Si

    STAS 199/2-86CuZn31Si

    STAS 199/2-86

    OLC45

    OLC45

    CuZn31Si

    STAS 199/2-86CuZn31Si

    STAS 880-66OLC25

    STAS 199/2-86CuZn31Si

    STAS 500-680L37STAS 199/2-86CuZn31Si

    STAS 500-680L37

    OLC25STAS 880-66

    18

    10

    5

    1

    2

    4

    7

    6

    3

    8

    9

    17 14 13

    11

    121516

    50-7

    0

    60-74

  • ANEXA 4

  • 13

    2

    1

    3

    4

    6

    7

    9

    8

    11 1210

    25-35

    103-118

    0L37

    6M2PASIV 02-13Piesa prindere13

    12 Surub M3 STAS 4845-78 6 1

    2

    3

    4

    5

    6

    6

    6

    6

    6

    6M2PASIV 02-11

    M2PASIV 02-10

    Salice

    M2PASIV 02-08

    M2PASIV 02-07

    M2PASIV 02-01

    M2PASIV 02-02

    M2PASIV 02-03

    M2PASIV 02-04

    STAS 4845-78

    M2PASIV 02-06

    Arc elicoidal

    Bolt 2

    Anvelopa

    11

    10

    9

    Piesa 2 tip U

    Janta

    Picior

    Surub M2.5

    Bolt 1

    Piesa 1 tip U

    Capac

    Carcasa

    Nr.desen sau STAS Buc. MaterialDenumireaNr.

    8

    7

    6

    6

    6

    6

    2

    1

    Format: A2

    Scara: 2:1

    VerificatDesenat Echipa ID1056

    MODUL PASIV 2

    M2PASIV 02-00

    UNIVERSITATEA TEHNICA CLUJ-NAPOCA

    Observatii

    Toade drepturile asupra lui sunt rezervate

    Acest desen apartine exclusiv UTC-N

    Tatar Mihai Olimpiu

    STAS 500-68 STAS 198/2-81CuAl10MnT

    STAS 198/2-81CuAl10MnT

    STAS 199/2-86CuZn31SiSTAS 880-66OLC25

    STAS 500-680L37STAS 199/2-86CuZn31Si

    STAS 199/2-86CuZn31SiSTAS 198/2-81

    Cauciuc

    CuAl10MnT

    STAS 880-66OLC25

    STAS 795-71ARC 1

    OLC25STAS 880-66

    5

  • ANEXA 5

  • 12

    1

    2

    3

    4

    6

    7

    8

    910 11 13

    25-35

    103-118

    OLC25

    STAS 500-68ARC 1

    STAS 880-66

    Cauciuc

    CuAl10MnT

    6M1PASIV 03-13Piesa prindere13

    12 Surub M3 STAS 4845-78 6 1

    2

    3

    4

    5

    6

    6

    6

    6

    6

    6M1PASIV 03-11

    M1PASIV 03-10

    Salice

    M1PASIV 03-08

    M1PASIV 03-07

    M1PASIV 03-01

    M1PASIV 03-02

    M1PASIV 03-03

    M1PASIV 03-04

    STAS 4845-78

    M1PASIV 03-06

    Arc elicoidal

    Bolt 2

    Anvelopa

    11

    10

    9

    Piesa 2 tip U

    Janta

    Picior

    Surub M2.5

    Bolt 1

    Piesa 1 tip U

    Capac

    Carcasa

    Nr.desen sau STAS Buc. MaterialDenumireaNr.

    8

    7

    6

    6

    6

    6

    2

    1

    Format: A2

    Scara: 2:1

    VerificatDesenat Echipa ID1056

    MODUL PASIV 1

    M1PASIV 03-00

    CuAl10MnT

    STAS 880-66

    UNIVERSITATEA TEHNICA CLUJ-NAPOCA

    Observatii

    0L37

    STAS 795-71

    Toade drepturile asupra lui sunt rezervate

    Acest desen apartine exclusiv UTC-NOLC25

    STAS 198/2-81

    Tatar Mihai Olimpiu

    CuZn31SiSTAS 199/2-86

    0L37STAS 500-68

    OLC25STAS 880-66CuZn31SiSTAS 199/2-86CuAl10MnT

    STAS 198/2-81

    STAS 198/2-81

    CuZn31SiSTAS 199/2-86

    5

  • ANEXA 6

  • CuAl10MnT

    STAS 880-66

    0LC35STAS 500-68

    CuZn31Si

    STAS 500-68

    CuZn31Si

    1ROBOT 02-13Roata dintata 113

    12 Janta 2 ROBOT 02-12 1 1

    2

    3

    4

    5

    6

    2

    1

    1

    1

    1ROBOT 02-11

    ROBOT 02-10

    ROBOT 02-09

    ROBOT 02-08

    ROBOT 02-07

    ROBOT 02-01

    Salice

    ROBOT 02-03

    ROBOT 02-04

    ROBOT 02-05

    STAS 5848/2-88

    Arbore 3

    Piesa 3

    Piesa echilibrare

    11

    10

    9

    Arbore 2

    Piesa 2

    Siguranta tip E

    Piesa 1

    Arc elicoidal

    Arbore 1

    Anvelopa

    Janta 1

    Nr.desen sau STAS Buc.DenumireaNr.

    8

    7

    10

    4

    1

    2

    6

    2

    Format: A2

    Scara: 2:1

    VerificatDesenat Echipa ID1056

    ROBOT INSPECTIE II

    ROBOT 02-00

    UNIVERSITATEA TEHNICA CLUJ-NAPOCA

    Observatii

    Toade drepturile asupra lui sunt rezervate

    Acest desen apartine exclusiv UTC-N

    23 Bolt filetat ROBOT 02-23 1

    1

    1

    1

    1

    STAS 4845-78

    ROBOT 02-20

    Pololu

    ROBOT 02-18

    Piulita M2

    Surub M2x4

    22

    21

    20

    Motor

    Piesa prindere

    19

    18

    14

    15 Roata dintata 3

    Roata dintata 2

    16

    17

    Surub M1.6

    Bolt

    ROBOT 02-14

    ROBOT 02-15

    STAS 4845-78

    ROBOT 02-17 1

    2

    1

    1

    Piesa 4

    1

    SATS 4071-80

    1

    2

    STAS 4845-78

    STAS 198/2-81

    OLC25

    ROBOT 02-25Piesa 5

    STAS 880-80

    0L37

    Surub M124

    25

    Tatar Mihai Olimpiu

    CuZn31Si

    STAS 199/2-860L37

    STAS 198/2-81

    ARC 1

    STAS 880-66

    Cauciuc

    STAS 199/2-86

    STAS 199/2-86

    OLC45

    Material

    CuAl10MnT

    STAS 795-71

    OLC25

    STAS 199/2-86OLC25

    STAS 880-66

    OLC45

    OLC45

    CuZn31Si

    STAS 199/2-86CuZn31Si

    STAS 199/2-86CuZn31Si

    STAS 199/2-86CuZn31Si

    STAS 500-680L37

    STAS 880-66OLC25

    STAS 880-66OLC25

    0L37STAS 500-68

    10

    5

    1

    2

    4

    7

    8

    9

    171413

    11

    15 18

    3

    16

    6

    12

    55-72

    57-65

    21

    22

    23

    20

    25

    19

    24

  • ANEXA 7

  • 93

    87 1110

    1

    2

    3

    4

    5

    6 9

    35

    35

    TEFLON

    STAS 500-68

    CuAl10MnT

    STAS 198/2-81

    OLC251

    2

    3

    4

    5

    6

    8

    8

    1

    2

    1MCAM 01-11

    STAS 4845-78

    MCAM 01-09

    STAS 5848/2-88

    STAS 4845-78

    MCAM 01-01

    MCAM 01-02

    MCAM 01-03

    STAS

    DynaSpy

    MCAM 01-06

    Suport Camera

    Surub M2

    Placa 2

    11

    10

    9

    Surub M1,6

    Saiba

    Actuator AMF

    Camera Wireless

    LED 5mm

    Placa 1

    Rola

    Bolt

    Nr.desen sau STAS Buc. MaterialDenumireaNr.

    8

    7

    4

    1

    8

    1

    20

    20

    Format: A2

    Scara: 2:1

    VerificatDesenat Echipa ID1056

    MODUL ORIENTARE CAMERA

    MCAM 01-00

    UNIVERSITATEA TEHNICA CLUJ-NAPOCA

    Observatii

    Toa

    de

    dre

    ptu

    rile

    asu

    pra

    lui s

    un

    t re

    zerv

    ate

    Ac

    est

    de

    sen

    ap

    art

    ine

    exc

    lusiv U

    TC-N0L37

    STAS 198/2-81

    Tatar Mihai Olimpiu

    Nitinol (NiTi)

    CuAl10MnTSTAS 880-66

    TEFLON

    OLC 45

    0L37STAS 500-68

  • ANEXA 8

  • 51 3 42

    max 450

    Subansamblu

    1

    2

    3

    4

    5

    MCAM 01-00

    ROBOT I 01-01

    SMMIE I 01-03

    M1PASIV 01-00

    M2PASIV 02-00Modul pasiv 2

    Modul pasiv 1

    Element elastic

    Robot inspectie 1

    Modul camera

    Nr.desen sau STAS Buc. MaterialDenumireaNr.

    1

    1

    3

    2

    1

    Format: A2

    Scara: 1:1

    VerificatDesenat Echipa ID1056

    SISTEM MICROROBOTIC MODULAR

    SMMIE I 02-00

    UNIVERSITATEA TEHNICA CLUJ-NAPOCA

    Observatii

    Toa

    de

    dre

    ptu

    rile

    asu

    pra

    lu

    i su

    nt

    reze

    rva

    te

    Ac

    est

    de

    sen

    ap

    art

    ine

    ex

    clu

    siv

    UTC

    -N

    Tatar Mihai Olimpiu

    Cauciuc

    Subansamblu

    Subansamblu

    Subansamblu

  • ANEXA 9

  • 1 532 4

    max 370

    25-35

    Modul pasiv 2

    Modul pasiv 1

    Element elastic

    Robot inspectie 1

    Nr.desen sau STAS Buc. MaterialDenumireaNr.

    1

    2

    1

    1

    Format: A2

    Scara: 1:1

    VerificatDesenat Echipa ID1056

    SISTEM MICROROBOTIC MODULAR I

    SMMIE I 01-00

    UNIVERSITATEA TEHNICA CLUJ-NAPOCA

    Observatii

    Toade drepturile asu

    pra lui su

    nt reze

    rvate

    Acest dese

    n apartine exclusiv UTC

    -N

    Tatar Mihai Olimpiu

    Subansamblu

    Subansamblu

    Subansamblu

    Cauciuc

    5

    Modul camera MCAM 01-00

    1

    1

    2

    3

    4

    ROBOT I 01-01

    SMMIE I 01-03

    M1PASIV 01-00

    M2PASIV 02-00

    Subansamblu

  • ANEXA 10

  • max25

    max 70

    17

    1

    3

    2

    4

    5 6 98 10 1211

    1516 1314

    7A - AA

    A

    OLC 25

    STAS880-66

    CuAl10MnT 1SMMIE II 05-13Piesa de prindere13

    12 Bolt 2 SMMIE II 05-12 3 1

    2

    3

    4

    5

    6

    1

    1

    1

    10

    6SMMIE II 05-11

    STAS 4845-78

    SMMIE II 05-09

    SMMIE II 05-08

    Pololu Robotics

    SMMIE II 05-01

    Salice

    SMMIE II 05-03

    SMMIE II 05-04

    SMMIE II 05-05

    SMMIE II 05-06

    Roata dintata

    Surub M1.5

    Capac 1

    11

    10

    9

    Motor +Reduc.

    Carcasa

    Capac 2

    Bolt 1

    Piesa 1

    Janta

    Anvelopa

    Tija pindere

    Nr.desen sau STAS Buc. MaterialDenumireaNr.

    8

    7

    1

    3

    3

    12

    12

    1

    Format: A2

    Scara: 1:1

    VerificatDesenat Echipa IDEI 1056

    MODUL ACTIV SMMIE II

    SMMIE II 05-00

    UNIVERSITATEA TEHNICA CLUJ-NAPOCA

    Observatii

    Toade drepturile asupra lui sunt rezervate

    Acest desen apartine exclusiv UTC-N

    23 Arbore 2 SMMIE II 05-23 3

    3

    3

    3

    3

    SMMIE II 05-21

    SMMIE II 05-20

    SMMIE II 05-19

    SMMIE II 05-18

    Bucsa 1

    Arc 1

    22

    21

    20

    Bucsa 2

    Arc 2

    19

    18

    14

    15 Siguranta tip E

    Bucsa 3

    16

    17

    Melc

    Siguranta

    SMMIE II 05-14

    STAS 5848/2-88

    SMMIE II 05-16

    STAS 5848/3-88 1

    1

    6

    1

    Arbore 1

    3

    SMMIE II 05-22

    3

    3

    SMMIE II 05-24

    SMMIE II 05-25Piesa 3

    Piesa 224

    TEFLON

    OLC 25 STAS198/2 81

    25

    Tatar Mihai Olimpiu

    STAS198/2 81

    Caudiuc

    CuAl10MnT

    STAS198/2 81CuAl10MnT STAS198/2 81CuAl10MnT

    STAS198/2 81CuAl10MnT

    STAS880-66OLC 25

    STAS198/2 81

    CuAl10MnT

    CuAl10MnT STAS198/2 81

    OL37

    STAS198/2 81

    TEFLON

    OLC45

    STAS5500-68

    OLC45

    TEFLON

    OLC 45

    CuAl10MnT

    STAS198/2 81CuAl10MnT

    STAS880-66OLC 25

    STAS795-71

    ARC1

    STAS880-66

    ARC1

    STAS795-71

    TEFLON

    CuAl10MnT STAS198/2 81

    24

    19 20 21 2218 23

    25

    SINTEZA LUCRARII ID_1056_2010_Tatar Mihai Olimpiu.pdfINTRODUCERESISTEM MICROROBOTIC MODULAR – GAMA DE DIAMETRE Φ50-70mm1.1. Modul activ pentru sistemul microrobotic modular1.2.Module pasive pentru sistemul microrobotic1.2.1. Modulul pasiv suport pentru acumulator1.2.2. Modulul pasiv suport pentru electronice

    1.3. Sistemul microrobotic modular de inspecţie şi explorare

    PROIECTAREA SUBSISTEMULUI DE ACŢIONARE DIN STRUCTURA SISTEMESISTEMUL DE COMANDĂ ŞI CONTROLSISTEM MICROROBOTIC MODULAR – GAMA DE DIAMETRE Φ30-50mm4.1.Microrobot de inspecţie în ţevi4.2. Sistemul microrobotic modular de inspectie şi explorare

    REALIZAREA ŞI TESTAREA PROTOTIPURILOR EXPERIMENTALE5.1.Sistemul microrobotic modular de inspecţie şi explorare5.2. Microrobot de inspecţie în ţevi

    CONCLUZII


Recommended