+ All Categories
Home > Documents > arbore cotit

arbore cotit

Date post: 16-Nov-2015
Category:
Upload: paula-plisco
View: 224 times
Download: 13 times
Share this document with a friend
Description:
arbore cotit
92
Manual de proiectare 5. Arborele cotit 5.1. Construcţia arborelui cotit Arborele cotit însumează momentele produse de fiecare cilindru şi furnizează utilizatorului momentul total. Rolul său este acela de a transforma mişcarea alternativă de translanţie a pistonului în mişcare de rotaţie. Manivela mecanismului bielă manivelă este reprezentată de cotul arborelui cotit. Parţile componente ale unui arbore cotit sunt (fig. 5.1): Figura 5.1 196
Transcript

4

Manual de proiectare

5. Arborele cotit

5.1. Construcia arborelui cotit

Arborele cotit nsumeaz momentele produse de fiecare cilindru i furnizeaz utilizatorului momentul total. Rolul su este acela de a transforma micarea alternativ de translanie a pistonului n micare de rotaie. Manivela mecanismului biel manivel este reprezentat de cotul arborelui cotit.

Parile componente ale unui arbore cotit sunt (fig. 5.1):

Figura 5.1

- fusul maneton pe care se articuleaz biela

- fusul palier reprezint lagarul de sprijin al arborelui cotit

- braul face legtura ntre fusul palier i fusul maneton

Un cot este format dintr-un fus maneton, cele doua brae care l ncadreaz i cte o jumtate din fusurile palier nvecinate.

Motoarele cu cilindri n linie au arbori cu un numr de coturi egal cu numrul de cilindri, iar cele cu cilindri n V au numrul de coturi egal cu jumtate din numrul de cilindri.

n partea posterioar a motorului se fixeaz volantul i organele de legtur cu utilizatorul, iar la partea anterioar se fixeaz elementele necesare pentru antrenarea unor sisteme auxiliare ( sistemul de distribuie a gazelor, sistemul de rcire, sistemul de ungere etc.)

Arborele cotit este supus unor solicitri extrem de mari i, de aceea, este necesar s posede o rigiditate deosebit. Acest lucru se poate realiza prin marirea dimensiunilor constructive, soluie limitat de scaderea frecvenei vibraiilor libere (din cauza creterii masei proprii) cu pericolul apariiei fenomenului de rezonan n timpul funcionrii.

Pentru a micora masa o soluie posibil este gurirea fusurilor. Aplicnd aceast soluie se mbuntete rezistena la oboseal i se ofer posibilitatea de a aduce uleiul de ungere spre fusuri prin interiorul arborelui cotit.

Micorarea abaterilor de form i poziie are o deosebit importan att n ceea ce privete fusurile ct i dispunerea coturilor. Calitatea suprafeei fusurilor este important pentru micorarea uzurilor.

Uzual, numrul de fusuri palier este cu unul mai mare dect numrul de fusuri maneton. La m.a.s. mai puin solicitate exist posibiltatea ca numrul de fusuri palier s fie mai mic dect cel al fusurilor maneton, caz n care unele brae sunt comune pentru dou fusuri maneton alturate.

La motoarele moderne braele au o form eliptic (fig. 5.2a), care s-a dovedit avantajoas n ceea ce privete rezistena la solicitrile mecanice. La motoarele extrem de solicitate braul poate ajunge pn la forma circular (fig. 5.2b).

Figura 5.2

Prin suprapunearea s a fusurilor (fig. 5.2 a) se mrete rezistena la oboseal a arborelui.

Reducerea concentratorilor de tensiuni n zona de racordare a fusurilor cu braul se face prin intermediul unor praguri (fig. 5.3). Ra cordarea fusului cu pragul se face fie cu o raz de racordare ( fig. 5.3a) fie cu degajri (fig. 5.3b).

Figura 5.3

Arborii cotii pentru motoarele care echipeaz autovehicule rutiere pot fi fabricai din oel sau din font.

Procedeul de obinere a semifabricatului pentru arborii din oel este forjarea n matri, iar arborii din font se realizeaz prin turnare.

Prin forjare n matri nu se nrerup ceea ce reduce concentratorii de tensiuni.

Turnarea are avantajul c realizeaz mai uor forma contragreutilor. La arborii din oel contragreutile se fabric separat i sunt fixate de arbore cu asamblri filetate. 5.2. Calculul arborelui cotit

n primul rnd vor fi stabilite dimensiunile constructive ale arborelui cotit, dup care urmeaz calculul de verificare.

Dimensiunile caracteristice ale arborelui cotit sunt prezentate in figura 4.4.

Figura 5.4unde:l-lungimea unui cot (distana dintre axele a doi cilindri consecutivi)l=lP+lM+2.g

lP [mm] lungimea fusului palier

dP [mm] diametrul exterior al fusului palier

lM [mm] lungimea fusului maneton (a fost adoptat la calculul capului bielei)

dM [mm] diametrul exterior al fusului maneton (a fost adoptat la calculul capului bielei)

dMi [mm] diametrul interior al fusului maneton

b [mm] limea braului

g [mm] grosimea braului

[mm] raza de racordare a fusului cu braulValorile recomandate pentru aceste dimensiuni sunt prezentate n tab 5.1.

Tabelul 5.1Dimen-

siuneaMotor in linieMotor in V

m.a.s.m.a.c.m.a.s.m.a.c.

l(1,1....1,25)D(1,15....1,35)D(1,25..1,35)D(1,4...1,55)D

dp(0,6....0,8)D(0.7...0,85)D(0,65...0,75)D(0,7....0,75)D

lp

-fus intermediar

-fus central sau de capt(0,5...0,6)dp

(0,75..0,85)dp(0,45...0,6)dp

(0,55...0,75)dp(0,5...0,7)dp

(0,7...0,88)dp(0,5...0,65)dp

(0,65...0,86)dp

dM(0,5...0,68)D(0,55...0,72)D(0,5....0,67)D(0,6...0,72)D

lM(0,45...0,62)dM(0,5...0,65)dM(0,45...0,62)dM(0,8...1)dM

dMi(0,6...0,8) dM(0,6...0,75) dM(0,6...0,8) dM(0,6...0,75) dM

b(1,7...1,9) dM(1,5...2) dM(1,7...1,9) dM(1,5...2) dM

g(0,15...0,35) dM(0,2...0,35) dM(0,15...0,35) dM(0,2...0,35) dM

(0,06....0,09) dM(0,07....1) dM(0,06...0,09) dM(0,07....1) dM

H1=dP/2+3 ... 8 mm (vezi fig. 5.4)

H1=dP/2+3 ... 8 mm (vezi fig. 5.4)H=H1+H2+r [mm] (vezi fig. 5.4)

a.Calculul de verificare a fusurilor la presiune de contact i la nclzire

Ansamblul fus-cuzinei, att n cazul fusului maneton ct i a celui palier, reprezint un lagr radial hidrodinamic. Pelicula de ulei dinte fus i cuzinet se menine n timpul funcionarii datorit micrii relative cu viteze mari a celor dou componente. Dac presiunea de contact dintre fus i cuzinet este mai mare dect presiunea din stratul de ulei, apare pericolul expulzrii peliculei de ulei dintre cele dou piese. n urma contactului direct dintre cele dou suprafee uzura se accentueaz i din cauza supranclzirii arborelui cotit apare pericolul gripajului. Uleiul are i rolul de a evacua o parte din cldura dezvoltat n lagr.

Pentru verificarea fusurilor la presiune specific este necesar s se stabileasc solicitrile care acioneaz asupra acestora. n acest scop se construiesc diagramele polare pentru fusul maneton i pentru cele palier.

1. Diagrama polar a fusului maneton

Fora care acioneaz asupra fusului maneton RM este rezultanta dintre fora B care acioneaz n lungul bielei i fora de inerie dat de masa bielei aferent micrii de rotaie FRB (fig. 5.5).

Vectorul este variabil att ca mrime ct i ca direcie i sens. Vectorul este de mrime constant care, fiind pe direcia manivelei, se rotete cu viteza unghiular a arborelui cotit fa de punctul O (fig. 5.5).

Figura 5.5

Pentru a uura compunerea acestor vectori se face o construcie grafic numit diagrama polar. Aceast construcie grafic se face considernd c manivela arborelui cotit este fix i biela se rotete n sens invers cu aceeai vitez relativ. Se fac urmatorii pai:

- la o scara a lungimilor Kl convenabil aleas se traseaz un cerc de raza R=l (lungimea bielei), cu centrul n punctul M. La aceeai scar a lungimilor Kl, pe diametrul vertical al cercului trasat se coboar un segment MO=r, raza manivelei (fig. 5.6a).

Figura 5.6- se traseaz un cerc de raz oarecare, cu centrul n O ,care nu intersecteaz cercul cu centrul in M (intersecteaz diametrul orizontal al cercului cu centrul n M In dou puncte). Cercul cu centrul n O se mparte n 12 pri egale prin punctele Oi (i=0...11). Prelungirile segmentelor OOi intersecteaz cercul cu centrul n M n punctele Ai (fig. 5.6b).

Se observ c OMAi reprezint poziia mecanismului biela-manivel pentru rotaii din 300 n 300 RA ale arborelui cotit (fig. 5.7).

OMA0-corespunde pozitiei pentru =00 RA (piston in p.m.i.)

OMA6-corespunde pozitiei pentru =1800 RA (piston in p.m.e.)

Figura 5.7

Dac n figura 5.2 se face o translaie a vectorului n lungul manivelei, mutnd vrful n punctul M (fig. 5) se observ c segmentul cuprins ntre OM (originea vectorului translatat) i vrful vectorului reprezint suma celor doi vectori ( i ). Indiferent de poziia mecanismului biel-manivel (adic indiferent de valoarea unghiului de manivel ) fora este orientat pe direcia bielei. Dac are valoare pozitiv sensul vectorului este dinspre M opus lui A (fig. 5.8a), iar dac este negativ vectorul va fi orientat dinspre M spre punct A (fig. 5.8b).

Figura 5.8- pentru a face compunerea vectorial, la o scar convenabil aleas a fortelor KF se coboar din M (pe diametrul vertical) un segment MOM=FRB. La motoarele n 4 timpi, pentru a realiza un ciclu motor, arborele cotit efectueaz doua rotaii complete. De aceea este necesar ca i biela s execute dou rotaii n jurul fusului maneton, rezultnd punctele Ai (i=0.....24; fig. 5.9a).

Din tabelul de fore (tab1) de la calculul dinamic al mecanismului biel manivel se scot valorile forei B pentru =00, 300, 600, ......, 6900, 7050, 7200.n diagrama polar se reprezint vectorul. Direcia acestui vector este MA0 (pistonul este in p.m.i. la nceputul cursei de admisie). Valoarea lui fiind negativ, sensul este dinspre M spre A0. Se traseaz la scara aleas a forelor KF segmentul (fig. 5.9). Segmentul OMO este chiar rezultanta vectorilor i . Se msoar segmentul OMO, se nmulete cu scara forelor KF i rezult valoarea n [N].

Figura 5.9Direcia vectorului este MA1. i aceasta are o valoare negativ, deci sensul lui va fi dinspre M spre A1. La aceeai scar a forelor KF, segmentul M1 reprezint vectorul (fig. 5.10).

Figura 5.10 Rezultanta va fi segmentul OM1. Valoarea lui OM1 [mm] se nmulteste cu KF [N/mm] i rezult . n continuare se procedeaz la fel pentru . De exemplu pentru =3900 pistonul se afl n p.m.i. la inceputul cursei de destindere. Valoarea lui este pozitiv. Direcia vectorului este MA13, iar sensul este opus lui A13. Segmentul OM13 reprezint (fig. 5.11).

Figura 5.11Diagrama polar a fusului maneton rezult unind punctele 0, 1, .... 23, 24 (fig. 5.12). Pentru a nu ncrca figura este suficient s se reprezinte numai punctele din vrfurile vectorilor .

Fifura 5.12Se observ c vectorii au numai valori pozitive. Diagrama polar se poate desfura (fig. 5.13). Prin planimetrarea diagramei polare desfurate se poate determina valoarea medie a solicitrilor pe fusul maneton .

Figura 5.13Aceast valoare medie poate fi calculat cu aproximaie i prin media aritmetic a valorilor vectorilor :

[N]

Pentru calculele ulterioare este necesar s se cunoasc valoarea medie i cea maximA RMmax a solicitrilor pe fusul maneton. Aceasta valoare maxim se determina din diagrama polar (fig. 5.12 i 5.13).

Deoarece s-a presupus c cilindri unui motor sunt identici, diagrama polar este aceeai pentru toate fusurile maneton ale unui motor cu cilindri n linie, defazat de la un cilindru la altul n funcie de decalajul dintre aprinderi.

La motoarele cu cilindri n V, deoarece pe un fus actioneaz dou biele, este necesar o nou compunere vectorial care ine seama de decalajul dintre aprinderile din cilindrii care acioneaz pe acelai fus maneton i de unghiul V-ului.

De exemplu, pentru un motor cu 8 cilindri n V (fig. 5.14), avnd ordinea de aprindere 1-5-4-8-6-3-7-2-1 i unghiul dintre liniile de cilindri , asupra fusului maneton doi acioneaz bielele din cilindri 2 si 6.

Figura 5.14

Decalajul dintre aprinderi este 7200/8=900 RA. ntre cilindri 2 i 6 decalajul dintre aprinderi este de . Dac cilindri 2 i 6 ar aciona fiecare asupra unui singur fus maneton, cele dou diagrame polare pentru fusul maneton ar fi la fel. De aceea, n prima faz, se construiete diagrama polar a fusului maneton pentru un singur cilindru.

Diagrama polar astfel construit se rotete, cu centrul n OM, cu 900 astfel nct unghiul dintre axele MOM i MOM s fie egal cu unghiul V-ului ( (fig. 5.15).

Figura 5.15

Deoarece procesele din cilindrul 2 se desfoar cu ntrziere fa de cilindrul 6, compunerea vectorial se face astfel:

-se noteaz cu (segmentele OMi din fig. 5.15) i (segmentele OMi din fig. 12) solicitrile produse pe fusul maneton de forele din mecanismul biel-manivel ale cilindrului 2, respectiv 6, i cu (segmentele OMi din fig. 5.15) rezultantele lor. Compunerea vectorial se face dup cum urmeaz (se ia n considerare faptul c procesele din cilindrul 2 se desfoar cu o ntrziere de 2700 RA fa de cele din cilindrul 6):

(fig. 5.15a)

......................................

(fig. 5.15b)

.........................................

nsumarea vectorial se face direct pe diagram (fig. 5.15) aplicnd, de exemplu, regula paralelogramului.

Diagrama polar a fusului maneton se obine unind punctele care reprezint vrfurile vectorilor (punctele i din fig. 5.16).

Figura 5.161. Diagrama polar a fusului palierAsupra unui fus palier actioneaz rezultanta forelor din fusurile maneton alturate acestuia (fig. 5.17a). Se observ c i actioneaz pe direcia manivelelor cilindrului respectiv (fig. 5.17b).Forele i actioneaz asupra fusurilor palier i-1 i i, respectiv i i i+1. Din motive de simetrie se consider c fiecare din aceste dou fore se mpart egal pe fusurile palier asupra crora acioneaz. n consecin, asupra fusului palier i acioneaz rezultanta forelor i (fig. 5.17.c).

Figura 5.17La construcia diagramei polare pentru fusul palier trebuie avut n vedere faptul c fora de pe un fus maneton care acioneaz pe fusul palier este rezultanta dintre fora de inerie a tuturor maselor aflate n micare de rotaie i fora n lungul bielei (fig. 5.18).

, dac (=ct

Vectorul se rotete n jurul punctului O cu viteza unghiular a arborelui cotit (fig. 5.18a), exact ca i vectorul (de la diagrama polar a fusului maneton).

Figura 5.18Se face acelai raionament ca i la diagrama polar pentru fusul maneton. Se translateaz n lungul manivelei astfel nct vrful acestuia s fie n M i punctul de aplicatie n Op (fig 5.18b). Este evident c dac n diagrama polar a fusului maneton (la scara aleas a forelor KF) se coboar pe diametrul vertical un segment MOp=FR, segmentele Opi sunt rezultantele (fig. 5.19).

Figura 5.19Mai departe se procedeaz ca n cazul diagramei polare pentru fusul maneton al unui motor cu cilindri in V.

Cu centrul n Op, se rotete diagrama polar a forelor RMPi cu unghiul , astfel nct OpM s se suprapun peste manivela cilindrului i+1 (vezi fig. 5.17b).

Pentru a construi diagrama polar a fusului palier i este necesar compunerea vectorial dintre i . Pentru a nu complica problema se face urmtoarea observaie:

- dac se aplic regula paralelogramului pentru nsumarea a doi vectori (fig 4.20), se observ c segmentul AE este jumtatea rezultantei . Punctul E se situeaz la jumtatea distanei dintre punctele B i D care sunt varfurile vectorilorcare se compun.

Figura 5.20Din aceast cauz nu este necesar cunoaterea valorilor i .

La compunerea + trebuie luat n considerare decalajul dintre aprinderile din cei doi cilindri.

De exemplu, pentru un motor cu 4 cilindri n linie (fig 5.21), avnd ordinea de aprindere 1-2-4-3-1, diagrama polar a fusului palier IV se construiete astfel (fig. 5.22):

Figura 5.21- pe diagrama polar a fusului maneton se duce segmentul MOp=FR, aceasta reprezentnd acum forele din cilindrul 4, care acioneaz asupra fusului palier IV;- cu centrul n OP se rotete aceast diagram cu 1800 (egal cu unghiul dintre manivelele cilindrilor 3 i 4);-defazajul dintre aprinderile n cilindrii 3 i 4 este de , cilindrul 3 fiind in urm:-fortele i se compun astfel:

(fig. 5.22a).............................................

(fig. 5.22b)............................................

Figura 5.22

Punctele din vrfurile vectorilor se noteaz i, cele din vrfurile vectorilor i i pentru vrfurile se noteaz cu i (vezi tab. 5.2). Tabelul 5.2

Vrfurile

pt.

Varfurile pt.

Vrfurile

pt.

Vrfurile pt.

sunt la jumtatea

segmentului

0

30

60

.

.

510

540

570

600

630

660

690

7200

1

2

.

.

17

18

19

20

21

22

23

0(24)

0

1

2

.

.

17

18

19

20

21

22

23

0(24)0

1

2

.

.

17

18

19

20

21

22

23

0(24)18-0

19-1

20-2

.

.

11-17

12-18

13-19

14-20

15-21

16-22

17-23

18-0

Diagrama polar a fusului palier pentru cazul analizat este prezentat n figura 5.23.

Figura 5.23

Pentru descrcarea fusurilor palier se utilizeaz contragreuti. Acestea echilibreaz 70-80% din fora de inerie a maselor n micare de rotaie Fe=(0,7-0,8).FR. La scara aleas a forelor se duce din Op spre M un segment OpC=Fe.

Se msoar segmentele OPi sau Ci [mm], se nmulesc cu scara forelor KF [N/mm] i rezult valoarea forelor . Ca i n cazul diagramei polare a fusului maneton, se poate trasa diagrama desfurat n funcie de (fig. 5.24).

Figura 54.24

Pentru calculele ulterioare prezint interes valoarea maxim i cea medie .

Acum se poate trece la calculul de verificare la presiune de contact. Suprafaa portant a unui fus (suprafaa pe care acioneaz forele RM i RP) este reprezentat de proiecia acestuia ntr-un plan normal pe axa cilindrului. Aceast proiecie este un dreptunghi cu laturile egale cu lungimea fusului l, respectiv diametrul acestuia d.

Pentru fusul palier suprafaa portant este:

SpP=lP.dP [mm2]iar pentru fusul maneton:

SpM=lM.dM [mm2]

Presiunea specific maxim pe fusul palier:

(5.1)Presiunea specifica medie pe fusul palier:

(5.2)Valorile admisibile sunt [9]:pPmax a=40 ... 60 MPa

P a=30 ... 50 MPaPresiunea specific maxim pe fusul maneton:

(5.3)Presiunea specific medie pe fusul maneton

(5.4)Valorile admisibile [9]:pMmax a=50 ... 90 MPa

M a=35 ... 60 MPa

Verificarea preliminar la nclzire se face considernd lucrul mecanic dezvoltat prin frecare ntr-o secund, pe unitatea de suprafa:Lf=Ff.vp [J]

(5.5)

unde: - Ff [N] fora de frecare n lagr raportat la unitatea de suprafa

- vp [m/s] viteza periferic (viteza relativ de deplasare a suprafeelor

Fora de frecare n lagr raportat la unitatea de suprafa poate fi scris:

Ff=(. [MPa]

(5.6)unde: - ( - coeficientul de frecare de alunecare

- [MPa] presiunea medie de contact din lagr

Viteza periferic este:

vp=10-3.rf. [m/s]

(5.7)

unde: - rf [mm] raza fusului

- [rad/s] viteza unghiular a arborelui cotit

=(.n/30 [rad/s]

(5.8)Raza lagrului este:rf=df/2 [mm]

(5.9)

unde: - df [mm] diametrul fusuluiDin (5.8) i (5.9) rezult:

[m/s]

(5.10)nlocuind relaiile (5.6) i (5.10) n (5.5) rezult:

[J]

(5.11)

Coeficientul de frecare fiind dependent de presiunea medie i viteza periferic, este dat de o relaie de forma:

(5.12)Aplicnd relaiile (5.10) i (5.12) n (5.11) rezult:

(J)

(5.13)Se definete coeficientul de uzur sau de nclzire a lagrului factorul:

i aplicnd relaia (5.13) rezult:

(5.14)Coeficientul de uzura pentru fusul palier este:

(5.15)

La fusul maneton viteza periferic este amplificat de oscilaiile bielei i de aceea se introduce un factor de corecie care depinde de factorul constructiv al bielei (=r/lb (vezi fig. 5.25).Coeficientul de uzura pentru fusul maneton:

(5.16)

Figura 5.25Valorile admisibile ale coeficientului de uzur sunt:qa=300 ... 350 pentru aliaj pe baz de staniu

qa=300 pentru aliaj de bronz cu plumbqa=400 ... 450 pentru aliaj de bronz cu plumb cu acoperireqa>300 pentru aliaj aluminiu-staniun funcie de valorile qP si qM se alege tipul de acoperire pentru cuzineii fusului palier respectiv pentru cei ai fusului maneton.

Un calcul mai complex pentru verificarea la nclzire a lagrelor se face pe baza teoriei hidrodinamice.

Acest calcul pe baza teoriei hidrodinamice are ca scop determinarea temperaturii uleiului din lagr i a jocului minim.

Din calculele anterioare se cunosc:

-df [mm]-diametrul fusului

- lf [mm]-lungimea fusului

- - valoarea medie a solicitarilor pe fus ( pentru fusul maneton i pentru fusul palier)

- presiunea medie pe fusul respectiv

Din standarde se alege jocul din lgar. Pentru lagrele hidrodinamice se recomand urmtoarele ajustaje: H7/f6; H8/f7; H7/j6. Cmpurile de tolerane sunt prezentate n tabelul 5.3. Tabelul 5.3

Diametre

nominale

[mm] Poziia cmpurilor de toleran i precizie [(]

Cuzinet Fus

H 7 H 8 f 6 f 7 j 6

minmaxminmaxminmaxminmaxminmax

18 ... 300+210+33-20-33-20-41-4+9

30 ... 500+250+39-25-41-25-50-5+11

50 ... 800+300+46-30-49-30-60-7+12

80 ... 1200+350+54-36-58-36-90-9+13

120 ... 1800+400+63-43-68-43-83-11+14

180 ... 2500+460+72-50-79-50-96-13+16

Jocul radial ( [mm] se poate stabili utiliznd relaia:(=(0,5 ... 1).10-3.df [mm]Se definesc urmtorii parametri:

- jocul relativ din lagr

- lungimea relativ a lagaruluiTemperatura de intrare a uleiului n lagr se adopt din intervalul:

tu1=85 ... 95 0CCondiia de echilibru termic pentru lagr este:

[kJ/s]

(5.17)

unde: - [kJ/s] cldura dezvoltat n lagr prin frecare n unitatea de timp;

- [kJ/s] cldura evacuat din lagr prin intermediul uleiului;

- [kJ/s] cldura evacuat din lagr prin perei;Caldura dezvoltat prin frecare este egal cu lucrul mecanic de frecare n lagr:

[kJ/s]

(5.18)

[kJ/s]

(5.19)

unde: - Ff [N] fora de frecare dintre cuzinet i fus

- vp [m/s] viteza periferic a fusului (viteza relativ dintre fus i cuzinet)

[N]

(5.20)Aplicnd relaiile (4.10) i (4.20) n (4.19) rezult:

[kJ/s]sau

[kJ/s]

Coeficientul de frecare lichid (l se determin pe baza teoriei ungerii hidrodinamice cu o relaie de forma:(l=(.(u

(5.21)

unde: - (u este o funcie care depinde de excentricitatea relativ er i de lungimea relativ a lagrului (;er=2e/

(5.22)

unde: - e [mm] distana pe direcie radial dintre centrul cuzinetului i axa fusului, n timpul funcionrii motorului (fig. 5.26).

Figura 5.26

Pentru determinarea excentricitii relative se definete cifra caracteristic sau coeficientul de ncrcare a lagrului:

n continuare se alege uleiul din tabelul 5.4 (numai pentru uleiuri minerale). Tabelul 5.4

Denumirea

uleiului Densitatea

relativ

[kg/dm3] Viscozitatea la

50 0C Indice de

viscozitate

la 15

0Cla 20

0C [cSt] [0E]

min max min max

M 20

M 30

M 40

M 500,9

0,905

0,905

0,9129

61

91

14145

76

102

1524

8

12

186

10

13

2090

90

90

90

M 20W Extra

M 30W Extra5,79,65

86,5

10

M 10W/50 Extra

M 20W/40 Extra0,9

0,99,6

10,512

156

69

9115

115

D 30 Super 1

D 40 Super 10,905

0,9110,5

1314,57,5

109

12min. 90

min. 90

DS 30

DS 400,91

0,917,5

109

12min. 90

min. 90

Uleiurile din clasa M (M 20, M 30, M 40, M 50) sunt recomandate pentru m.a.s. la care condiiile de lucru sunt uoare. Acestea sut uleiuri monograd i nu sunt aditivitate sau conin cel mult aditivi depresani (coboar punctul de congelare).

Urmtoarea clas de uleiuri pentru m.a.s. este M xW Extra (M 20W Extra i M 30W Extra). Acestea sunt tot monograd cu aditivi amelioratori ai indicelui de viscozitate, antispumani, detergeni, antioxidani, anticorosovi i dispersani.

Cea mai utilizat clas de uleiuri minerale pentru m.a.s. este cea multigrad (M 10W/50 Extra i M20W/40 Extra). Acestea sunt numite i uleiuri iarn-var, sunt aditivate, i se utilizeaz la motoare cu condiii de funcionare moderate.

Clasa D de uleiuri este utilizat la m.a.c., cele urmate de indicaia Super sau Premium fiind aditivate. Uleiurile din clasa DS (DS 30 i DS 40) sunt utilizate la m.a.c. supraalimentate.

Uleiurile sintetice i semisintetice au la 50 0C viscozitatea 12,15 ... 12,6 0E. Dac se cunoate viscozitatea n 0E (grade Engler) se determin cifra caracteristic u a uleiului (fig. 5.26).

Figura 5.26

Viscozitatea dinamic pentru o anumit temperatura tul a uleiului din lagr se determin cu relaia:

[N.s/m2]

(5.24)

Cu valoarea calculat pentru (u din relaia (5.24) se determin valoarea funciei ( din (5.23).

Excentricitatea relativ er se determin din figura 5.27 funcie de ( i de (=lf/df.

Figura 5.27

n continuare se determin (u (din fig. 25) n funcie de excentricitatea relativ er i de raportul (=lf/df.

Figura 5.28

Acum este posibil determinarea coeficientului de frecare lichid (l din relaia (5.21).

Toi termenii relaiei (5.20) pentru calculul lucrului mecanic de frecare sunt acum cunoscui. Se observ c singura variabil este coeficientul de frecare lichid (l, care depinde de excentricitatea relativ er prin funcia (u. Funcia (u depinde de cifra caracteristic (, care la rndul ei este funcie de viscozitatea dinamic (u. Deoarece viscozitatea dinamic depinde de temperatura uleiului din lagr tul, rezult c i lucrul mecanic de frecare din lagr va depinde de aceast temperatur.

De aceea se poate trasa curba de variaie a lucrului mecanic de frecare (care este egal cu cldura dezvoltat n lagr prin frecare) funcie de temperatura uleiului. Pentru aceasta se dau valori ale temperaturii uleiului din lagr tul n intervalul [80 ... 130 0C]. Pentru fiecare din aceste valori se determin viscozitatea dinamic (u (rel. 5.24), cifra caracteristic ( (rel. 5.23), excentricitatea relativ er (fig. 24), funcia (u (fig. 5.25), coeficientul de frecare lichid (l i, n final, lucrul mecanic dezvoltat prin frecare , care este egal cu cldura degajat prin frecare . Avnd aceste valori pentru cldura dezvoltat prin frecare (termenul din stnga al relaiei 5.17) se poate trasa curba de variaie a acesteia pe intervalul de temperaturi 80 ... 130 0C (fig. 5.30.

Pentru determinarea temperaturii uleiului la ieirea din lagr este necesar stabilirea variaiei funcie de temperatur pentru partea din dreapta a ecuaiei de echilibru (5.17).

Experimental s-a stabilit c fraciunea evacuat prin pereii lagarului reprezint 10 ... 15% din cldura dezvoltat prin frecare.

[kJ/s]

(5.25)

Pentru determinarea cldurii evacuate din lagr prin intermediul uleiului se scrie ecuaia caloric:

[kJ/s]

(5.26)unde: - cu [kJ/kg K] cldura specific a uleiului;

- [m3/s] debitul volumic de ulei care circul prin lagr;

- u [kg/m3] densitatea uleiului;

Produsul cu.u variaz n limitele relativ restrnse n funcie de natura uleiului i de temperatur, aa c se poate alege:cu.u= 1670 ... 1888 kJ/m3 K

Pe baza teoriei hidrodinamice a ungerii se poate determina debitul volumic de ulei prin lgar cu o relaie de forma [3]:

(5.27)unde: - n [rot/min] turaia motorului;

- ( [mm] jocul diametral (a fost calculat anterior) - df [mm] diametrul fusului

- (v este o funcie care depinde de excentricitatea relativ er i de raportul (=lf/df (fig. 5.29)

Figura 5.29

Dnd valori lui tul n intervalul 80-130 0C se determin pentru aceste valori i traseaz curba de variaie n funcie de temperatur pentru suma pe graficul pe care a fost reprezentat cldura (fig. 5.30). Temperatura corespunzatoare punctului de intersecie a celor dou curbe este temperatura de ieire a uleiului din lagr tu2 (fig. 5.30.

Figura 5.30Se pune condiia:tu21,5

(5.31)

Dac una dintre condiiile (5.28) sau (5.31) nu este indeplinit se reface calculul alegnd alte valori pentru jocul diametral (, un alt ulei sau redimensionnd lagarul (dp,lp).b.Calculul de verificare a cotului la oboseal

Acest calcul se face n ipoteza c arborele cotit este o grind discontinu avnd un numr de pri egale cu numrul coturilor.

Mai departe se fac urmtoarele ipoteze:

- un cot este o grind simplu rezemat la capete;- reazemele sunt considerate a fi rigide i coaxiale;-datorit lungimii reduse a reazemelor, se neglijeaz momentele ncovoietoare care acioneaz aspra acestora;-asupra reazemului din stnga a cotului z acioneaz un moment de intrare Minz, egal cu suma momentelor de rsucire produse de cilindrii situai ntre acest cot i partea frontal a motorului (fulia ventilatorului).

De ex.: Pentru un motor cu 4 cilindri n linie (fig. 5.31), momentul de intrare pentru cotul 3 este:Min3=M1+M2

(5.33)Asupra reazemului din dreapta acioneaz momentul de intrare Minz la care se adaug cel produs de cilindrul z.

De ex.: Pentru arborele din figura 5.31:Me3=Min3+M3

(5.34)

Figura 5.31

Este evident c momentul de intrare pentru cotul z+1 este egal cu momentul de ieire al cotului z:Minz+1=Mez

(5.35)

Se observ c momentul de intrare n primul cot este nul, iar momentul de ieire al ultimului cot i este egal cu momentul instantaneu sum al motorului M(.

B1.Verificarea la oboseala a fusului palier

La stabilirea ordinii de aprindere i la calculul momentului sum numerotarea cilindrilor a nceput de la volant spre ventilator. Pentru verificarea la oboseal a cotului arborelui cotit ordinea de numerotare a cilindrilor s-a inversat, deci nsumarea momentelor de rsucire pentru determinarea momentelor de intrare, respectiv celor de ieire ale unui cot se va face de la dreapta la stnga n tabelul (tabelul de momente). Cu alte cuvinte, ultimul cilindru i din calculele anterioare devine cilindrul 1 n calculele de verificare la oboseal pentru arborele cotit.

Valorile momentelor de intrare, respectiv de ieire pentru fiecare cot ale unui arbore cu i coturi se trec intr-un tabel (tab. 5.5).

Tabel 5.5Min1Min2Min3.........Mini-1MiniMei= M(

0

15

30

.

.

690

705

720

Momentul de intrare pentru primul cot Min1=0 deoarece n stanga cotului 1 nu se produce moment de rsucire. Aa cum s-a aratt in relaia (5.35), momentul de intrare n cotul 2 Min2 este egal cu momentul de ieire din cotul 1 Me1. Valorile momentului de intrare n cotul 2 Min2 se copiaz din tabelul (momente), fiind coloana corespunzatoare lui Mi.

Coloana corespunztoate lui Min3 se determin nsumnd coloanele Mi si Mi-1 din tabelul (momente), iar pentru celelalte valori ale momentelor de intrare se continu nsumarea de la dreapta la stnga a coloanelor din tabelul de momente.

Tensiunile maxime i minime ntr-un fus palier sunt:

[MPa]

(5.36)

[MPa]

(5.37)

unde: - WpP [mm3] modulul de rezisten polar al fusului palier

[mm3]

(5.38)

unde: - diP=diM [mm] diametrul interior al fusului palier (poate fi luat egal cu cel al fusului maneton); - dP [mm] diametrul exterior al fusului palier;Pentru un cot oarecare z, valorile momentulu maxim i minim de torsiune n reazemul din stnga se iau din tabel 5.5, coloana corespunzatoare momentului Minz.

n reazemul din dreapta acioneaza momentul Minz+1. Pentru ultimul cot, momentul de torsiune pe reazemul din dreapta va fi Mei.

Fusul palier este solicitat la rsucire de un ciclu asimetric. Pentru calculul coeficientului de siguran la oboseal se aplic teorema lui Serensen.

(5.39)unde: - (-1 [MPa] rezistena la oboseal la solicitarea de rsucire pentru un ciclu simetric

(-1=(0,55 ... 0,58).-1

Rezistena la oboseal la solicitarea de ncovoiere pentru un ciclu simetric-1=(0,44 ... 0,52).r

Rezistena la rupere pentru materialul arborelui cotit:

r=600 ... 800 MPa pentru oel carbon (OLC)r=800 ... 900 MPa pentru oel aliat

r=700 ... 900 MPa pentru font cu grafit nodular

unde: - (0=(1,8 ... 2).(-1 [MPa] rezistena la oboseal la solicitarea de torsiune pentru un ciclu pulsator

- (k( - coeficientul efectiv de concentrare a tensiunilor pentru solicitarea de torsiune

- ( - factorul dimensional pentru solicitarea de torsiune(k(/( ( 2,5sau se determin (k( (fig. 5.32a) i ( (fig. 5.32b).

Figura 5.32

- ( - coeficientul de calitate a suprafeei

(=1,1 ... 1,28 pentru oeluri ecruisate cu jet de alice(=1,1 ... 1,28 pentru fusuri clite prin CIF

Valorile admisibile pentru coeficientul de siguran la oboseal al fusului palier [3]:cLa3 ... 4 pentru motoare de autoturism

cLa3 ... 4 pentru m.a.c. care echipeaz autovehicule comerciale

cLa3 ... 4 pentru m.a.c. supraalimentatb.2.Verificarea la oboseal a fusului maneton

Schema de incrcare pentru un cot sprijinit pe dou reazeme este prezentat n figura 5.33.

Figura 5.33Forele au fost descompuse dup dou direcii:

- una n planul cotului (normala la fusul maneton)

- una tangential la fusul maneton.

Pentru un cot oarecare z:

- fora dup direcia tangenial la cotul z Tz este chiar fora tangenialT=B.sin(+() [N]pentru cotul z (se ine seama de decalajul la aprindere ntre cilindri), care a fost determinat la studiul dinamic al mecanismului biel-manivel- fora Zz din planul cotului este egal cu suma algebric (vezi fig. 5.33):

Zz=ZB+FRB+FRM [N]

(5.40) unde: - ZB=B.cos(+() [N] fora mormal pe fusul maneton a fost determinat la studiul dinamic al mecanismului biel-manivel

- FRB=-mBM.r.2 [N] fora de inerie a masei bielei aferent micrii de rotaie

- FRM=-mM.r.2 [N] fora de inerie a masei manetonului aflat n micare de rotaie

[kg]unde: - dM, dMi i lM [mm] diametrul exterior, diametrul interior, respectiv lungimea fusului maneton

- [kg/dm3] densitatea materialului arborelui cotit

=7,8 ... 7,85 kg/dm3 pentru oel

=7,1 ... 7,15 kg/dm3 pentru font

Aplicnd ecuaiile de echilibru ale forelor i momentelor se determin reaciunile pe cele doua reazeme.

Reaciunile din reazemul stng:

-ecuaia de echilibru pe direcia tangential:

de unde rezult:

[N]

(5.41)-ecuaia de echilibru in planul cotului:

de unde rezult:

[N]

(5.42)

unde: - FRb=-0,5.(mcot-mM).r.2 [N] fora de inerie a masei unui bra (masa cotului a fost adoptat la studiul dinamic al mecanismului biel-manivel)

- Fcg=0,5.Fe [N] fora de inerie a unei contragreuti

- Fe [N] fora de echilibrare a fost stabilit la construcia diagramei polare pentru fusul palier (Fe=(0,7 ... 0,8).FR)

Momentul de ncovoiere n planul cotului MC (fig. 5.34) este:

[Nm]

(5.43)

Figura 5.34-forele Zs, FRb i Fcg [N] , iar lungimile l,a [mm]

[mm] (vezi fig. 5.33)Momentul de ncovoiere tangenial MT este :

[Nm]

(5.43)

Pentru a permite accesul uleiului n lagrul fusului, acesta este gurit n plan transversal. Poziia orificiului de ungere se stabilete pe baza diagramei de uzur.

Diagrama de uzura indic zona n care presiunea de contact din lagrul respectiv este minim. Prin plasarea orificiului de ungere n aceast zon scade presiunea pe care pompa de ulei trebuie s o asigure n magistrala de ulei.

Diagrama de uzur nu este una cantitativ deoarece nu urmrete determinarea valorii presiunii de contact ci doar a zonei n care aceasta este cea mai mic.

Pentru trasarea diagramei de uzur se pornete de la presupunerea c fiecare din forele Ri care acioneaz pe fus se distribuie pe un sector de cerc de 1200, simetric fa de direcia forei (fig 5.35a). De exemplu, pentru fusul maneton se prneste de la diagrama polar a acestuia (fig. 5.35b).

Figura 5.35

Direcia i mrimea forelor R0......23 care acioneaz pe fus sunt cele din diagramele polare pentru fusul maneton respectiv pentru palier (n fig. 5.35b se d un exemplu pentru fora R13). Din figura 5.35b se observ c fora Ri acioneaz pe suprafaa fusului opus punctului i (vezi i fig. 5.36).

La o scara a forelor KF[N/mm] se traseaza sectoarele de cerc pe care acioneaz fiecare fora Ri (p13 din fig. 5.35b pentru R13).

Pentru simplificarea construciei se pot trasa direciile forelor printre puncte nsumnd apoi valorile tuturor forelor care acioneaz pe aceeai direcie (fig. 5.36a).

Figura 5.36

Sectorele haurate reprezint aciunea forelor Ri asupra fusului maneton (fig. 5.36b conform fig. 5.36a):

- pI=R1+R2+R8+R9+R20+R21 acioneaz pe un sector de cerc de 1200 dispus simetric fa de direcia I

- pII=R7+R19 acioneaz pe un sector de cerc de 1200 dispus simetric fa de direcia II- pIII=R0+R6+R18 acioneaz pe un sector de cerc de 1200 dispus simetric fa de direcia III- pIV=R5+R10+R11+R12 acioneaz pe un sector de cerc de 1200 dispus simetric fa de direcia IV- pV=R3+R4+R16+R23 acioneaz pe un sector de cerc de 1200 dispus simetric fa de direcia V- pVI=R14+R15 acioneaz pe un sector de cerc de 1200 dispus simetric fa de direcia VI- pVII=R13 acioneaz pe un sector de cerc de 1200 dispus simetric fa de direcia VII- pVIII=R12 acioneaz pe un sector de cerc de 1200 dispus simetric fa de direcia VIII

Diagrama din figura 5.36b ia n considerare doar forele Ri calculate din 30 in 30 0RA. Pe baza acestei diagrame prelucrate (fig. 5.37a) se poate trasa cu aproximaie diagrama de uzur pentru fusul respectiv (fig. 5.37b).

Figura 5.37

Grosimea radial a sectorelor de cerc din figura 34a este reprezentarea la scara forelor KF [N/mm] a urmtoarelor valori:

p1=pIp2=pI+pII

p3=pI+pII+pIIIp4=pI+pII+pIII+pIVp5=pI+pII+pIII+pIV+pVp6=pI+pII+pIII+pIV+pV+pVIp7=pII+pIII+pIV+pV+pVIp8=pIII+pIV+pV+pVIp9=pIII+pIV+pV+pVI+pVIIp10=pIV+pV+pVI+pVIIp11=pV+pVI+pVIIp12=pVI+pVIIp13=pVIIp14=pVII+pVIIIp15=pVIII

Zona nnegrit reprezint ndeprtarea de material de pe suprafaa fusului datorit uzurii (fig. 5.37b). n partea cea mai subire a acestei zone se nregistreaz i presiunea de contact minim. Aici va fi amplasat orificiul de ungere, a crui ax este nclinat cu unghiul fa de vertical (fig. 5.37b).

Avnd stabilit poziia orificiului de ungere pentru fusul maneton se determin proieciile vectorilor i pe axa n-n (fig. 5.38), normala la axa o-o a orificiului. Seciunea slabit a fusului este cea a orificiului, de aceea calculul se face aici.

Figura 5.38Proiecia vectorului pe axa n-n este:

[Nm]

(5.44)iar cea a vectorului pe axa n-n:

[Nm]

(5.45)Momentul ncovoietor n seciunea orificiului este:

(5.46)Calculul pentru fusul maneton se organizeaz ntr-un tabel (tab. 5.6): Tabelul 5.6

TsZBZZsMTMcMnMinzM(

0

15

30

.

.

.

690

705

720

Tensiunea maxim de ncovoiere n seciunea orificiului de ungere:

[MPa]

(5.47)iar tensiunea minim n aceast seciune:

[MPa]

(5.48)unde: - Mnmax, Mnmin [Nm] momentul maxim, respectiv cel minim din coloana Mn a tabelului; - WM [mm3] modulul de rezistan la ncovoiere pentru fusul maneton;

pentru gaur interioar concentric:

[mm3]

(5.49)pentru gaur interioar excentric (fig. 5.39):

[mm3]

(5.49)

Figura 5.39

Coeficientul de corecie f se determin din figura 5.40, n funcie de raportul celor dou diametre:

=dMi/dM (vezi fig. 5.39)

i de excentricitatea relativ:

(vezi fig. 5.39)

Figura 5.40Coeficientul de siguran la ncovoiere pentru fusul maneton:

(5.50)unde -1 [MPa] rezistena la oboseal pentru solicitarea de ncovoiere cu un ciclu simetric (a fost stabilt la calculul fusului palier)

- (k coeficientul efectiv de concentrare a tensiunilor

(k=1,9 ... 2 sau se adopt din figura 5.41a n care diametrul gurii de ungere d0=2 ... 4 mm

- - factorul dimensional =0,7 ... 0,8 sau se adopt din figura 5.341 - =(2-1-0)/

0 =(1,6 ... 1,8).-1(=1,1 ... 1,28 pentru oeluri ecruisate cu jeturi de alice(=1,1 ... 1,4 pentru clire prin CIF

[MPa]

[MPa]

Figura 5.41

Momentul de torsiune care acioneaz asupra fusului maneton al unui cot z este egal cu suma dintre momentul de intrare n cot (Minz din tab1) i momentul produs de reaciunea tangenial din reazemul stng:

n relaia anterioar: Minz [Nm], r [mm], T [N].Calculele pentru solicitarea de torsiune se trece tot n tabelul 5.6.Tensiunea maxim de torsiune n fusul maneton este:

[MPa]

(5.51)iar cea minim:

[MPa]

(5.52)unde: - M(max, M(min [MPa] momentul de torsiune maxim, respectiv minim, pe fusul maneton

- WpM [mm3] modulul de rezisten polar al fusului maneton

[mm3] pentru gaur interioar concentric

[mm3] pentru gaur interioar excentric

Factorul de corecie f se adopt din figura 5.40.

Coeficientul de siguranta la torsiune pentru fusul maneton:

(5.54)unde: - (-1, (k(, (, ( - au aceeai semnificaie i valori ca i n cazul calculului la solicitarea de oboseal pentru fusul palier

- (m, (v au aceeai semnificaie ca i n cazul calculului la solicitarea de oboseal pentru fusul palier

- ( - se adopt din figura 5.41bCoeficientul global de siguran la oboseal pentru fusul maneton:

(5.55)Valorile admisibile sunt:cMa=2,5 ... 3 pentru m.a.s.cMa=3 ... 3,5 pentru m.a.c.b.3.Calculul de verificare la oboseal a braului

Solicitrile care apar la braul arborelui cotit sunt: de ntindere, de compresiune, de ncovoiere i de torsiune.

Calculele se fac pentru seciunea tangenial la muchia suprioar a fusului palier (fig. 5.42a), tensiunile cele mai mari nregistrndu-se n punctul A al acestei seciuni (fig. 5.42a).

Figura 39

Momentul incovoietor in planul cotului este (fig. 5.42b):Mcot=10-3.a.Zs [N.m]

(5.56)

unde: - a [mm], Zs [N]

Momentul de ncovoiere n planul braului este (fig. 39c):Mb=Minz+0,5.10-3.Ts.dp= Minz+0,25.10-3.T.dp [Nm]

(5.57)

Variania momentului ncovoietor n planul cotului este prezentat n fig. 5.42b, iar a celui din planul braului n fig. 5.42c. Tensiunile de ntindere-compresiune din bra sunt produse de fora ZS (fig 5.42d).

Se observa ca momentul n planul cotului corespunztor punctului A este nul. Tensiunea de ncovoiere i cea de ntindere-compresiune n punctul A sunt determinate de momentul din planul braului Mb i de fora de reaciune din reazemul de intrare ZS.

Tensiunea n punctul A produs de Mb este:

[MPa]

(5.58)unde: - Wb [mm3] modulul de rezisten la ncovoiere al braului

[mm3]

(5.59)

- b [mm] limea braului (vezi fig. 5.42)

- g [mm] grosimea braului (vezi fig. 5.42)Relaiile (56) i (59) se nlocuiesc n (5.58) i rezult:

[MPa]

(5.60)Tensiunea de ntindere-compresiune n punctul A este:

[MPa]

(5.61)unde: - Ab=b.g [mm2] aria seciunii transversale a brauluiRezult:

[MPa]

(5.62)

Tensiunea de ncovoiere i de ntindere-compresiune se determin nsumnd relaiile (60) si (62):

[MPa] (5.63)

Tensiunea maxim de ncovoiere i de ntindere-compresiune n punctul A va fi:

[MPa]

(5.64)iar cea minim:

[MPa]

(5.65)

Zsmax, Zsmin se iau din tabelul 2 din coloana corespunztoare lui ZsCoeficientul de siguran la ncovoiere pentru bra:

(5.66)-1, ( i au fost adoptate la calculul fusului maneton

(k se adopt din figura 5.43a funcie de raportul /dP ( raza de racordare a fusului cu braul)

Figura 5.43

Momentul de torsiune n seciunea1234 (fig. 39a) este:

[Nm]

(5.67)unde: - a [mm]

Repartiia tensiunilor produse de momentul M( n seciunea 1-2-3-4 este cea din figura 5.42e.

Tensiunea produs de momentul M( in punctul A (fig. 5.42a) se determin cu relaia:

[MPa]

(5.68)unde: - Wdb [mm3] modulul de rezisten la torsiune al arborelui

Wdb=K.b.g2 [mm3]

(5.69)

K coeficientul lui Saint Venant se adopt din figura 5.44

Figura 5.44

Aplicnd relaiile (5.67) i (5.69) n (5.68) rezult

[MPa]

(5.70)Tensiunea maxim de torsiune n punctul A:

[MPa]

(5.71)iar cea minim:

[MPa]

(5.72)

Tsmax, Tsmin se iau din tabelul 5.6 din coloana corespunztoare lui Ts

Coeficientul de siguran la torsiune pentru bra:

(5.73)(-1, ( - au fost adoptate la calculul fusului palier

( - din figura 5.41b nlocuind pe d cu valoarea lui b(k( - se adopt din figura 40b funcie de raportul /dP

[MPa]

Coeficientul global de siguran pentru bra:

(5.74)

Valorile admisibile sunt:

cba=2 ... 3 pentru m.a.s.

cba=3 ... 3,5 pentru m.a.c.

PAGE 202

_1262461179.unknown

_1262856108.unknown

_1262954592.unknown

_1263013322.unknown

_1263144882.unknown

_1263149320.unknown

_1263149718.unknown

_1263150909.unknown

_1265140311.unknown

_1265140850.unknown

_1265141753.unknown

_1263151895.unknown

_1263151936.unknown

_1263152055.unknown

_1263150961.unknown

_1263151271.unknown

_1263149883.unknown

_1263150420.unknown

_1263149766.unknown

_1263149538.unknown

_1263149604.unknown

_1263149479.unknown

_1263146801.unknown

_1263149124.unknown

_1263149158.unknown

_1263147380.unknown

_1263145332.unknown

_1263145417.unknown

_1263145170.unknown

_1263145268.unknown

_1263016280.unknown

_1263132419.unknown

_1263144738.unknown

_1263132406.unknown

_1263015374.unknown

_1263015533.unknown

_1263015333.unknown

_1262961404.unknown

_1262977613.unknown

_1262977680.unknown

_1262977737.unknown

_1262977657.unknown

_1262975046.unknown

_1262975069.unknown

_1262961567.unknown

_1262960441.unknown

_1262960624.unknown

_1262961239.unknown

_1262960508.unknown

_1262955932.unknown

_1262960270.unknown

_1262954802.unknown

_1262945724.unknown

_1262949723.unknown

_1262950607.unknown

_1262954543.unknown

_1262949772.unknown

_1262946000.unknown

_1262949688.unknown

_1262945843.unknown

_1262945003.unknown

_1262945087.unknown

_1262945667.unknown

_1262945041.unknown

_1262856202.unknown

_1262936298.unknown

_1262856123.unknown

_1262795049.unknown

_1262852610.unknown

_1262853782.unknown

_1262853881.unknown

_1262855921.unknown

_1262853811.unknown

_1262853726.unknown

_1262853766.unknown

_1262853650.unknown

_1262850759.unknown

_1262850841.unknown

_1262852589.unknown

_1262850810.unknown

_1262795434.unknown

_1262850726.unknown

_1262795389.unknown

_1262793251.unknown

_1262794636.unknown

_1262794957.unknown

_1262795039.unknown

_1262794741.unknown

_1262794025.unknown

_1262794574.unknown

_1262793922.unknown

_1262791473.unknown

_1262791770.unknown

_1262793215.unknown

_1262791895.unknown

_1262791976.unknown

_1262791502.unknown

_1262791096.unknown

_1262791157.unknown

_1262461542.unknown

_1262344200.unknown

_1262453657.unknown

_1262454846.unknown

_1262454972.unknown

_1262460687.unknown

_1262460699.unknown

_1262455003.unknown

_1262460682.unknown

_1262454888.unknown

_1262454949.unknown

_1262454861.unknown

_1262454105.unknown

_1262454504.unknown

_1262454785.unknown

_1262454444.unknown

_1262453740.unknown

_1262453755.unknown

_1262453710.unknown

_1262449244.unknown

_1262452051.unknown

_1262453262.unknown

_1262453311.unknown

_1262452312.unknown

_1262449402.unknown

_1262452010.unknown

_1262449341.unknown

_1262446753.unknown

_1262449209.unknown

_1262449217.unknown

_1262446764.unknown

_1262446556.unknown

_1262446587.unknown

_1262437950.unknown

_1262289468.unknown

_1262343660.unknown

_1262344088.unknown

_1262344153.unknown

_1262344169.unknown

_1262344133.unknown

_1262344016.unknown

_1262344075.unknown

_1262344054.unknown

_1262343746.unknown

_1262341358.unknown

_1262342348.unknown

_1262343628.unknown

_1262342258.unknown

_1262340880.unknown

_1262340965.unknown

_1262338935.unknown

_1259416942.unknown

_1262274448.unknown

_1262288479.unknown

_1262288759.unknown

_1262288914.unknown

_1262288725.unknown

_1262274636.unknown

_1262276953.unknown

_1262274543.unknown

_1262259268.unknown

_1262259416.unknown

_1262274403.unknown

_1262259375.unknown

_1262251047.unknown

_1262251074.unknown

_1259418227.unknown

_1259418247.unknown

_1259423758.unknown

_1259417246.unknown

_1258966878.unknown

_1258969987.unknown

_1258971940.unknown

_1259414463.unknown

_1258969999.unknown

_1258968635.unknown

_1258969866.unknown

_1258967657.unknown

_1258962487.unknown

_1258966156.unknown

_1258966398.unknown

_1258962713.unknown

_1258837362.unknown

_1258838234.unknown

_1258111431.unknown


Recommended