+ All Categories

SPTR

Date post: 15-Jan-2016
Category:
Upload: caden
View: 26 times
Download: 0 times
Share this document with a friend
Description:
SPTR. Universitatea “Politehnica” din Bucuresti 2007-2008 Adina Magda Florea http://turing.cs.pub.ro/sptr_08 si curs.cs.pub.ro. Curs 10. Retele bayesiene Predictie bayesiana Invatare bayesiana. 2. Probabilitati. Probabiltate neconditionata (apriori) P(A|B) - PowerPoint PPT Presentation
22
SPTR SPTR Universitatea “Politehnica” din Bucuresti 2007-2008 Adina Magda Florea http://turing.cs.pub.ro/sptr_ 08 si curs.cs.pub.ro
Transcript
Page 1: SPTR

SPTRSPTR

Universitatea “Politehnica” din Bucuresti

2007-2008

Adina Magda Floreahttp://turing.cs.pub.ro/sptr_08

si curs.cs.pub.ro

Page 2: SPTR

Curs 10

Retele bayesiene

Predictie bayesiana

Invatare bayesiana

2

Page 3: SPTR

Probabilitati• Probabiltate neconditionata (apriori) P(A|B)• Probabilitate conditionata (aposteriori) - P(A|

B)

Masura probabilitatii producerii unui eveniment A este o functie P:S R care satisface axiomele:

• 0 P(A) 1• P(S) = 1 ( sau P(adev) = 1 si P(fals) = 0)• P(A B) = P(A) + P(B) - P(A B)

3

Page 4: SPTR

A si B mutual exclusive P(A B) = P(A) + P(B)

P(e1 e2 e3 … en) = P(e1) + P(e2) + P(e3) + … + P(en)

e(a) – multimea de evenimente atomice in care apare a, mutual exclusive si exhaustive

P(a) = P(ei)eie(a)

4

Page 5: SPTR

Regula produsului

Probabilitatea conditionata de producere a evenimentului A in conditiile producerii evenimentului B

P(A|B) = P(A B) / P(B)

P(A B) = P(A|B) * P(B)

5

Page 6: SPTR

Inferente din DP

Distributie de probabilitate P(Carie, Dur_d)dur_d dur_d

carie 0.04 0.06carie 0.01 0.89

P(carie dur_d) = 0.04 + 0.01 + 0.06 = 0.11P(carie) = 0.04 + 0.06 = 0.1

Se poate generaliza pt orice set de variabile Y si Z:

P(Y) = Σz P(Y,z)O distributie peste Y se poate obtine prin insumarea peste

toate celelalte variabilele dintr-o DP ce contine Y

6

Page 7: SPTR

Inferente din DP

Distributie de probabilitate P(Carie, Dur_d, Evid)

P(carie | dur_d) = P(carie dur_d) / P(dur_d)

P(~carie | dur_d) = P(~carie dur_d) / P(dur_d)

P(dur_d) = 0.108 + 0.012 + 0.016+0.064

= 1/ P(dur_d)

- Constanta de normalizare

7

dur_d ~dur_d

evid ~evid evid ~evid

carie 0.108 0.012 0.072 0.008

~carie 0.016 0.064 0.144 0.576

Page 8: SPTR

Inferente din DP

P(Carie | dur_d) = P(Carie, dur_d) =

[P(Carie, dur_d, evid) + P(Carie, dur_d, ~evid)] =

[ <0.108, 0.016> + <0.012, 0.064>] = <0.12, 0.8> =

<0.6, 0.4>

De aici rezulta procedura de inferenta

X – variabila de interogare

E – variabilele observate (probe) si e valorile observate

Y – variabilele neobservate

P(X|e) = P(X,e) = Σz P(X,e,y)

8

Page 9: SPTR

Regula lui Bayes

P(a^b) = P(a|b) P(b)

P(a^b) = P(b|a)P(a)

P(b|a) = P(a|b) P(b) / P(a)

Generalizare

P(Y|X) = P(X|Y) P(Y) / P(X)

cu normalizare

P(Y|X) = P(X|Y) P(Y)

9

Page 10: SPTR

Invatare Bayesiana

date – probe, ipotezeDropsurih1: 100% cireseh2: 75% cirese 25% lamaieh3: 50% cirese 50% lamaieh4: 25% cirese 75% lamaieh5: 100% lamaie

H – tip de punga cu valori h1 .. h5

Se culeg probe (variabile aleatoare): d1, d2, … cu valori posibile cirese sau lamaie

Scop: prezice tipul de aroma a urmatorului drops• Invatarea Bayesiana calculeaza probabilitatea fiecarei ipoteze pe baza

datelor culese si afce predictii pe aceasta baza.• Predictia se face pe baza tuturor ipotezelor, nu numai pe baza celei mai

bune ipoteze

10

Page 11: SPTR

Invatare Bayesiana

Fie D datele cu valoarea observata d

Probabilitatea fiecarei ipoteze, pe baza regulii lui Bayes, este:

P(hi|d) = P(d|hi) P(hi) (1)

Predictia asupra unei ipoteze necunoscute X

P(X|d) = Σi P(X|hi) P(hi|d) (2)

• Elemente cheie: ipotezele apriori P(hi) si probabilitatea unei probe pentru fiecare ipoteza P(d|hi)

P(d|hi) = Πj P(dj|hi) (3)

Presupunem probabilitatea apriori pentru

h1 h2 h3 h4 h5

0.1 0.2 0.4 0.2 0.1

11

Page 12: SPTR

h1 h2 h3 h4 h5

0.1 0.2 0.4 0.2 0.1

h1: 100% cirese

h2: 75% cirese 25% lamaie

h3: 50% cirese 50% lamaie

h4: 25% cirese 75% lamaie

h5: 100% lamaie

P(lamaie) = 0.1*0 + 0.2*0.25 + 0.4*0.5 + 0.2*0.75+ 0.1*1 = 0.5 = 1/0.5 = 2

P(h1|lamaie) = P(lamaie|h1)P(h1) = 2*0.1*0 = 0

P(h2|lamaie) = P(lamaie|h2)P(h2) = 2 * (0.25*0.2) = 0.1

P(h3|lamaie) = P(lamaie|h3)P(h3) = 2 * (0.5*0.4) = 0.4

P(h4|lamaie) = P(lamaie|h4)P(h4) = 2 * (0.75*0.2) = 0.3

P(h5|lamaie) = P(lamaie|h5)P(h5) = 2 * (1*0.1) = 0.2

12

P(hi|d) = P(d|hi) P(hi)

Page 13: SPTR

h1 h2 h3 h4 h5

0.1 0.2 0.4 0.2 0.1

h1: 100% cirese

h2: 75% cirese 25% lamaie

h3: 50% cirese 50% lamaie

h4: 25% cirese 75% lamaie

h5: 100% lamaie

P(lamaie,lamaie) = 0.1*0 + 0.2*0.25*0.25 + 0.4*0.5*0.5 + 0.2*0.75*0.75+ 0.1*1*1 = 0.325

= 1/0.325 = 3.0769

P(h1|lamaie,lamaie) = P(lamaie,lamaie|h1)P(h1) = 3* 0.1*0*0 =0

P(h2|lamaie,lamaie) = P(lamaie,lamaie|h2)P(h2) = 3 * (0.25*.25*0.2) = 0.0375

P(h3|lamaie,lamaie) = P(lamaie,lamaie|h3)P(h3) = 3 * (0.5*0.5*0.4) = 0.3

P(h4|lamaie,lamaie) = P(lamaie,lamaie|h4)P(h4) = 3 * (0.75*0.75*0.2) = 0.3375

P(h5|lamaie,lamaie) = P(lamaie,lamaie|h5)P(h5) = 3 * (1*1*0.1) = 0.3

13

P(hi|d) = P(d|hi) P(hi)

P(d|hi) = Πj P(dj|hi)

Page 14: SPTR

14

• P(hi|d1,…,d10) din ecuatia (1)

Page 15: SPTR

h1 h2 h3 h4 h5

0.1 0.2 0.4 0.2 0.1

h1: 100% cirese

h2: 75% cirese 25% lamaie

h3: 50% cirese 50% lamaie

h4: 25% cirese 75% lamaie

h5: 100% lamaie

P(d2=lamaie|d1)=P(d2|h1)*P(h1|d1) + P(d2|h2)*P(h2|d1) + P(d2|h3)*P(h3|d1)

+ P(d2|h4)*P(h4|d1) + P(d2|h5)*P(h5|d1) =

= 0*+0.25*0.1+.5*0.4+0.75*0.3+1*0.2 = 0.65

15

P(X|d) = Σi P(X|hi) P(hi|d)

Predictie Bayesiana

Page 16: SPTR

ObservatiiIpoteza adevarata va domina in final predictia

Predictia Bayesiana este optimala: fiind dat setul de ipoteze, orice alta predictie va fi corecta mai putin frecvent

Probleme daca spatiul ipotezelor este mare

Aproximare

Se fac predictii pe baza ipotezei celei mai probabile

MAP Learning – maximum aposteriori

P(X|d)=~P(X|hMAP)

In exemplu hMAP=h5 dupa 3 probe deci 1.0

Pe masura ce se culeg mai mlte date MAP si Bayes se apropie

16

Page 17: SPTR

Invatarea in retele Bayesiene• Dropsuri de cirese si lamaie – o punga• Continuu de ipoteze• θ – parametrul care se invata• Modelam cu o RB• P(F=cirese) θ ---- F – aroma (var aleatoare)• N dropsuri, c cirese si l=N-c lamaie

P(d|hθ)= Πj=1,N P(dj|hθ) = θc * (1- θ)l

• Ipoteza cu predictie maxima este data de valoarea θ care maximizeaza aceasta expresie

L=log(P(d|hθ))= Σj=1,N log(P(dj|hθ)) = c logθ * l log(1- θ)

Derivam in functie de θ

• dL/dθ = c/ θ – l/(1- θ) =0

• θ = c/(c+l) = c/N

17

Page 18: SPTR

18

Aroma - FAroma - F

Ambalaj - W

P(F=cirese) θ

P(F=cirese) θ

F P(W=rosu|F)cirese θ1

lamaie θ2

Page 19: SPTR

RB

19

Cutremur

Alarma

TelMihai TelDana

HotP(H)0.001

P(C)0.002

H C P(A)T T 0.95T F 0.94F T 0.29F F 0.001

A P(M)T 0.9F 0.05

A P(D)T 0.7F 0.01

H C P(A | H, C)T F

T T 0.95 0.05T F 0.94 0.06F T 0.29 0.71F F 0.001 0.999

Tabela de probabilitaticonditionate

Page 20: SPTR

Semantica RB

A) Reprezentare a distributiei de probabilitate

B) Specificare a independentei conditionale – constructia retelei

A) Fiecare valoare din distributia de probabilitate poate fi calculata ca:

P(X1=x1 … Xn=xn) = P(x1,…, xn) =

i=1,n P(xi | parinti(xi))

unde parinti(xi) reprezinat valorile specifice ale variabilelor Parinti(Xi)

20

Page 21: SPTR

Inferente probabilistice

21

Cutremur

Alarma

TelMihai TelDana

HotP(H)0.001

P(C)0.002

H C P(A)T T 0.95T F 0.94F T 0.29F F 0.001

A P(M)T 0.9F 0.05

A P(D)T 0.7F 0.01

P(M D A H C ) =P(M|A)* P(D|A)*P(A|H C )*P(H) P(C)=0.9 * 0.7 * 0.001 * 0.999 * 0.998 = 0.00062

Page 22: SPTR

Invatarea in retele BayesieneP(F=cirese,W=verde|hθ, θ1, θ2)=

P(F=cirese|hθ, θ1, θ2) P(W=verde|F=cirese, hθ, θ1, θ2) = θ (1- θ)

• P(d|hθ, θ1, θ2) = θc * (1- θ)l * θrc * (1- θ)gc * θrl * (1- θ)gl

• L = [c log θ + l log (1- θ)]+ [rc log θ1 + gc log(1- θ1) +

[rl log θ2 + gl log(1- θ2)]

dL/d θ = c/ θ – l/(1- θ) = 0

dL/d θ1 = rc/ θ1 – gc/(1- θ1) = 0

dL/d θ2 – rl/ θ2 – gl/(1- θ2) = 0

θ = c/(c+l) θ1=rc/(rc+gc) θ2 = rl/(rl+gl)

22