+ All Categories
Home > Documents > 1 Modul 1 Introducere

1 Modul 1 Introducere

Date post: 03-Mar-2018
Category:
Upload: veronicanistor
View: 258 times
Download: 0 times
Share this document with a friend

of 94

Transcript
  • 7/26/2019 1 Modul 1 Introducere

    1/94

    ROBOTICA

    Robotizarea Fabricatiei II Conf. Dr. Ing. Bogdan MOCAN

    Bogdan MOCAN

    Departamentul Ingineria Proiectrii si Robotica

    e-mail: [email protected]

    Robotizarea fabricaiei I

    Modul 1 - Introducere in domeniul roboticii industriale

    ROBOTICA

    1

  • 7/26/2019 1 Modul 1 Introducere

    2/94

    Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN 2

    2016 Bogdan Mocan Toate drepturile rezervate autorului.

    Acest material este protejat n conformitate cu legile privind drepturile de autor

    (Legea nr.8/1996 cu toate modificrile ulterioare). Nicio parte a acestui material nupoate fi reprodus, sub nici o form i prin nici un mijloc, fr permisiunea n scris dinpartea autorului.

    Pentru utilizarea exclusiv a studenilor care au participat la cursulRobotizarea Fabricaiei I".

  • 7/26/2019 1 Modul 1 Introducere

    3/94

    Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Definiii

    Robotica industrial este tiina i tehnologia roboilor carepresupune:

    proiectarea, realizarea i implemenatrea lor in aplicaiiindustriale.

    Robot industrial este un echipament tehnologic cu funcionareautomatizat, flexibil, adaptabil prin reprogramare la condiiile unuimediu tehnologic complex in care acioneaz substituind una sau maimulte dintre funciile operatorilor umani.

  • 7/26/2019 1 Modul 1 Introducere

    4/94

  • 7/26/2019 1 Modul 1 Introducere

    5/94

    Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Robotul industrial conform ISO 8373Automatically Controlled

    Industrial robots are automated, meaning thatthey operate by themselves with little or nodirect human control. This is achieved through arobotic controller, a computing device that

    calculates robotic movement by reading codeand sending motion instructions to the motorsof the robot.

    The IRC5, ABBs fifth generation robot

    controller. The IRC5 unit is modular and cancontrol up to 36 synchronized axes.

    Note: Each axis of motion is controlled by onemotor. For example, a six axis robot has six

    motors, one at each articulated joint.

  • 7/26/2019 1 Modul 1 Introducere

    6/94

    Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Robotul industrial conform ISO 8373Reprogrammable

    Industrial robot controllers encode motioninformation to the joint motors by readingmachine code.

    Note: Industrial robot programming code is different than

    the common G code used in CNC programming, and is

    typically proprietary. For example, we use the ABB RAPIDlanguage with ABB controllers.

  • 7/26/2019 1 Modul 1 Introducere

    7/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Robotul industrial conform ISO 8373Text-Based Programming (RAPID)

    RAPID code can be edited in most text editors and mark-ups can be imported into apps like Notepad++. However,it is easiest to program within the RobotStudio environment.

    The RAPID editor is similar to the RhinoScript editor, with conveniences like instant semantics checks, argumentpick lists, and syntax coloring.

  • 7/26/2019 1 Modul 1 Introducere

    8/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Robotul industrial conform ISO 8373Graphical Programming (RobotStudio)

    Screen shot from RobotStudio. It would be very tedious to use text-based programming for an entire robot program so, just as we do

    with CNC programming, we use a graphical editor that allows us to manipulate and simulate a CAD model.

    The difference here is that we can synchronize the code very quickly without the need to specify a post-processor, as we are usingABB programming software for ABB robot controllers.

  • 7/26/2019 1 Modul 1 Introducere

    9/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Robotul industrial conform ISO 8373Parametric Programming (HAL)

    HAL is an example of an industrial robotic programming plugin for Grasshopper which allows users to simulate their robots andgenerate RAPID code in near real time. The advantage is that the code output is directly tied to a parametric model, allowing theuser to bypass tedious importing and re-importing of CAD geometry into RobotStudio.

    Image from hal.thibaultschwartz.com

  • 7/26/2019 1 Modul 1 Introducere

    10/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Robotul industrial conform ISO 8373Multipurpose Manipulator

    Industrial robots are different from task-specific fabrication equipment such as 3Dprinters, laser cutters, and CNC mills in that they are intentionally unspecific and, as aresult, can be used for an almost endless range of applications. The arm is fitted withwhat are called end effectors or end-of-arm tooling which are specific towhichever application the robot is intended to perform. Common industrial robotapplications include (but are certainly not limited to):

    Welding

    Laser Cutting

    Painting

    Palletizing

    Machine Tending

  • 7/26/2019 1 Modul 1 Introducere

    11/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Multipurpose Manipulator Robotic Welding

    Robotic arms can weld along curves using MIGor TIG welding end effectors, or they can weldat points using spot welding end effectors.Spot welding end effectors can beopen/closed and on/off, whereas MIG/TIGwelders are only on/off.

    Note: Unlike CNC end mills, these tools cant

    be directly touched off, but rather have anoffset distance from the target not unlike a

    laser cutting heads focal length.ABB robotic arm with spotwelding end effector

  • 7/26/2019 1 Modul 1 Introducere

    12/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Multipurpose Manipulator Robotic Laser Cutting

    Laser tubes, where wattage generates the laser beam, and the ensuing opticsassembly have to be in a straight line for a robotic arm, versus configured with mirrorturns as in a typical laser cutter.

  • 7/26/2019 1 Modul 1 Introducere

    13/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Multipurpose Manipulator Robotic Painting (ASM)

    Robotic painting arms use ASM, or Automated Spray Method, to rapidly and evenlycoat cars and airplane components with paint. These robots are covered in drapedcloth which allows the robot its full range of motion while protecting the arm from

    paint.

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    14/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Multipurpose Manipulator Robotic Palletizing

    Robotic palletizing is used toquickly and accurately stackobjects onto pallets. These robotsare known for long reach, highpayload, and fast speed andtypically require only three axes.

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    15/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Multipurpose Manipulator RoboticMachine Tending

    Robots can be integrated into

    assembly line or othermanufacturing processes. Forexample, a robotic arm may beused to retrieve finished partsfrom a CNC machining centerand reload the machine with

    fresh stock.

    ROBOTICA

    http://youtube.com/v/Hmh2RVvXeoEhttp://youtube.com/v/Hmh2RVvXeoE
  • 7/26/2019 1 Modul 1 Introducere

    16/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Robotul industrial conform ISO 8373 Programmable in 3 or More Axes

    An industrial robotic arm requires 3 axes (or degrees of freedom) because 2 axes

    are required to reach any point in a plane and the third is required to reach any pointin space.

    Think of the 3 axes as yaw, pitch, and roll rather than X, Y, and Z as in a CNC mill.

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    17/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Robotul industrial conform ISO 8373 Typical 6 Axis Arm

    A typical 6 axis arm (as well as our ownIRB 140 arm) have 6 axes that work intandem (interpolate and configure) toreach targets.

    Ranges of motion for the axes are:

    Axis 1 (base twisting) 360o

    Axis 2 (base bowing) 200o

    Axis 3 (forearm flapping) 280o

    Axis 4 (forearm twisting) 400o*

    Axis 5 (wrist flapping) 240o

    Axis 6 (wrist twisting) 800o*

    *unlimited but set to default value

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    18/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Robotul industrial conform ISO 8373- Robot Reach

    Reach is more of an art than a scienceand is based on joint interpolation aswell as joint configuration (decidingbetween multiple possible jointpositions to reach a target). The imageto the left is a typical reach diagram forthe ABB IRB 140. The 810mm frontreach is almost 32in.

    Reach is also dependent on how therobot is mounted.

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    19/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Robotul industrial conform ISO 8373- Robot Load Diagram

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    20/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Robotul industrial conform ISO 8373- Robot Working range/ velocity

    Robot Working range/ velocity - exemple

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    21/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Robotul industrial conform ISO 8373- Robot Mounting

    Robots can be bolted to steel tables orother rigid bases but are often wall orceiling-mounted to enhance reach

    relative to the intended roboticapplication.

    If the object the robot is mounted to canalso be moved via the robotic controller,such as gantry or rail-mounting, this is

    considered an additional axis oradditional axes depending on theconfiguration.

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    22/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    De ce sa automatizam/ robotizam?

    .... fr automatizare si robotizare, companiile

    productoare, nu numai ca pierd din competitivitate,

    dari reduc semnificativ ansele de a rmne pe

    pia. Sursa: Siemens Industry Software

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    23/94Robotizarea Fabricatiei I

    ROBOTICA

    Conf. Dr. Ing. Bogdan MOCAN

    Istoria roboticii industriale

    ROBOTICA

    http://f/Didactic_IPR/Anul_2015-2016/SEM_II/RF_I/01_Curs_1_Introducere/History_of_Industrial_Robots_online_brochure_by_IFR_2012.pdfhttp://f/Didactic_IPR/Anul_2015-2016/SEM_II/RF_I/01_Curs_1_Introducere/History_of_Industrial_Robots_online_brochure_by_IFR_2012.pdf
  • 7/26/2019 1 Modul 1 Introducere

    24/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Productori de roboti

    ROBOTICA

    http://www.comau.com/enghttp://www.comau.com/eng
  • 7/26/2019 1 Modul 1 Introducere

    25/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Asociatii din domeniul roboticii

    JIRA (Japan industrial robotics association)

    WRO (world robotic Olympiad)

    RIA (robotics institute of America)

    IFR (international federation of robotics)

    CRIA (China Robot Industry Alliance )

    IEEE robot & automation society

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    26/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Classification of robotics

    According to JIRA

    JIRAs chiefly concerned with industrial robots but

    has created a robot classification system.i. Manual Robotii. Fixed Sequence robotiii. Variable sequence robot

    iv. Numerical robotv. Playback robotvi. Intelligent robot

  • 7/26/2019 1 Modul 1 Introducere

    27/94

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    28/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    JIRA classification - Fixed sequence

    robot

    This type of robot repeats a fixed sequence of actionswithout needing to be controlled by an operator

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    29/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    JIRA classification - Variable sequence

    robot

    This type of robot is similar to class 2, except that the sequenceof actions can be reprogrammed easily allowing it to be quicklyadapted to perform new tasks.

  • 7/26/2019 1 Modul 1 Introducere

    30/94

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    31/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    JIRA classification - Numerical robot

    This type of robot moves through a sequence ofactions, which it receives in the form of numerical data.

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    32/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    JIRA classification - Intelligent robot

    A robot that senses its environment and responds tochanges in it in order to continue performing itsfunction.

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    33/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Productori de roboti cota de piata

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    34/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Aspecte privind robotii industriali

    Grade de libertate: numrul de micri independente pe care lepoate executa un corp.

    1 D.O.F. 2 D.O.F. 3 D.O.F.

  • 7/26/2019 1 Modul 1 Introducere

    35/94

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    36/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Identificarea axelor robotilor industriali

    l

    i ll

    Axele 1, 2 and 3 sunt axele principale (mecanismului generator de traiectorie).

    Axele 4, 5 and 6 sunt axele mecanismuluide orientare.

    Axa 2

    Axa 1

    Axa 3

    Axa 6

    Axa 5

    Axa 4

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    37/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Structura unui robot industrial

    Bild: KUKA Roboter GmbH, Augsburg, D, www.kuka.com

    1. Care este legtura intre numrul

    de axe si numrul gradelor delibertate?

    2. Cate grade de libertate are unrobot cu 7 axe?

    3. De ce in realitate un robot nupoate atinge toate punctele dinspaiul sau de lucru?

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    38/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Sisteme de coordonate in robotica

    Roboii articulai pot fi controlati prinstabilirea unghiurilor din cuple(cinematica directa). Acest lucru esteutil pentru aplicaii de cercetare,

    jogging manual, sau parcarea robotului.

    In cele mai multe situaii se cunoate poziiasi orientarea efectorului final dupa carecontrolerul robotului calculeaz unghiurile

    din cuple (cinematica inversa).

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    39/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Sisteme de coordonate in robotica

    Aceste poziii pot fi specificate n coordonate de baz sau se pot folosi o multitudine dealte sisteme de referina asociate diverselor elemente din spaiul de lucru al robotului.

    De obicei, este mai facil sa se specifice poziiile efectorului final fcndu-se referire laTCP (Tool Center Point) i sistemul de coordonate asociat obiectului de lucru.

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    40/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Sisteme de coordonate in robotica

    Muli roboi (inclusiv ABB) utilizeaz un sistem de coordonate de baz cu originea npunctul n care axa 1 i suprafaa de montare se intersecteaz.

    Din punctul de vedere al robotului axa x mergenainte, stnga axa y, i axa z merge nsus.

  • 7/26/2019 1 Modul 1 Introducere

    41/94

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    42/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Sisteme de coordonate in robotica

    Un sistem de coordonate (definit de) utilizator este adesea aliniat cu dispozitivele deprindere si fixare din zona de lucru (ex. suprafaa mesei de lucru).

    n acest sistem de coordonate (UCS) putem alinia sistemul de coordinate asociatobiectului de lucru.

  • 7/26/2019 1 Modul 1 Introducere

    43/94

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    44/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Categorii de roboi industriali

    Caracterizati de cinematica axelor principale.

  • 7/26/2019 1 Modul 1 Introducere

    45/94

  • 7/26/2019 1 Modul 1 Introducere

    46/94

  • 7/26/2019 1 Modul 1 Introducere

    47/94

  • 7/26/2019 1 Modul 1 Introducere

    48/94

  • 7/26/2019 1 Modul 1 Introducere

    49/94

  • 7/26/2019 1 Modul 1 Introducere

    50/94

  • 7/26/2019 1 Modul 1 Introducere

    51/94

  • 7/26/2019 1 Modul 1 Introducere

    52/94

  • 7/26/2019 1 Modul 1 Introducere

    53/94

  • 7/26/2019 1 Modul 1 Introducere

    54/94

  • 7/26/2019 1 Modul 1 Introducere

    55/94

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    56/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Aspecte privind singularitatile

    Aici, punctul de concuren al axelor mecanismului de orientare, localizat la interseciaaxelor comandate A4, A5, A6, este poziionat direct n centrul de rotaie al axei 1.

    Punctul de concuren a axelormecanismului de orientare

    Singularitate in pozitia deasupra capului

  • 7/26/2019 1 Modul 1 Introducere

    57/94

  • 7/26/2019 1 Modul 1 Introducere

    58/94

    ROBOTICA

    Tipuri de micri pe care le poate face

  • 7/26/2019 1 Modul 1 Introducere

    59/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Tipuri de micri pe care le poate face

    un robot industrial

  • 7/26/2019 1 Modul 1 Introducere

    60/94

    ROBOTICA

    Elementele componente ale unui

  • 7/26/2019 1 Modul 1 Introducere

    61/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Elementele componente ale unui

    sistem robotic industrial

    2. Robotul

    ROBOTICA

    Elementele componente ale unui

  • 7/26/2019 1 Modul 1 Introducere

    62/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Elementele componente ale unui

    sistem robotic industrial

    3. Efectorul final

  • 7/26/2019 1 Modul 1 Introducere

    63/94

  • 7/26/2019 1 Modul 1 Introducere

    64/94

    ROBOTICA

    Actuatoare folosite in domeniul

  • 7/26/2019 1 Modul 1 Introducere

    65/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Actuatoare folosite in domeniul

    roboticii

    Motoare de curent alternativ;

    Motoare de curent continuu se rotesc in directiacurentului;

    Motoare pas cu pas control foarte bun al rotatiei;

    Motoare piezo utilizeaza vibratiile elementelorpiezoceramice;

    Muschi artificial (air muscle) aerul comprimat determinamiscarea

  • 7/26/2019 1 Modul 1 Introducere

    66/94

  • 7/26/2019 1 Modul 1 Introducere

    67/94

  • 7/26/2019 1 Modul 1 Introducere

    68/94

  • 7/26/2019 1 Modul 1 Introducere

    69/94

  • 7/26/2019 1 Modul 1 Introducere

    70/94

  • 7/26/2019 1 Modul 1 Introducere

    71/94

  • 7/26/2019 1 Modul 1 Introducere

    72/94

    ROBOTICA

    Ti i d f fi l

  • 7/26/2019 1 Modul 1 Introducere

    73/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Tipuri de efectoare finale

    1. Dispozitive de lucru

    cap de slefuire, frezare, gaurire

  • 7/26/2019 1 Modul 1 Introducere

    74/94

    ROBOTICA

    Cele mai uzuale aplicatii ale robotilor

  • 7/26/2019 1 Modul 1 Introducere

    75/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Cele mai uzuale aplicatii ale robotilor

    industriali

    ROBOTICA

    E l d li tii b ti t

  • 7/26/2019 1 Modul 1 Introducere

    76/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Exemple de aplicatii robotizate

    Manipulare & asamblare &paletizare

    ROBOTICA

    E l d li tii b ti t

  • 7/26/2019 1 Modul 1 Introducere

    77/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Exemple de aplicatii robotizate

    Sudare cu arc electric & sudare inpuncte

  • 7/26/2019 1 Modul 1 Introducere

    78/94

  • 7/26/2019 1 Modul 1 Introducere

    79/94

    ROBOTICA

    Aspecte de pia privind roboii

  • 7/26/2019 1 Modul 1 Introducere

    80/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    p p p industriali

    Sursa: The Rise of the Machines The New Economy/ February 2013

    Distributia roboilor la 10000 de muncitori

  • 7/26/2019 1 Modul 1 Introducere

    81/94

    ROBOTICA

    T di t l i d i l b til

  • 7/26/2019 1 Modul 1 Introducere

    82/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Tendintele in domeniul robotilor

    Sursa: International Federation of Robotics/ World Robotics 2013 Industrial Robots

    ROBOTICA

    Te di tele i do e i l robotilor

  • 7/26/2019 1 Modul 1 Introducere

    83/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Tendintele in domeniul robotilor

    evolutia pretului

    robotilor industriali

    relativ la costul fortei de

    munca

    din 90 pana in 2006

  • 7/26/2019 1 Modul 1 Introducere

    84/94

  • 7/26/2019 1 Modul 1 Introducere

    85/94

  • 7/26/2019 1 Modul 1 Introducere

    86/94

    ROBOTICA

    Eficienta proceselor industriale

  • 7/26/2019 1 Modul 1 Introducere

    87/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Eficienta proceselor industriale

    Comparatie intre procesele realizate manual si automatizate/robotizate

    Aplicaiaindustrial Eficienaproceselorn regimmanual (%)

    Eficienaproceselor

    robotizate (%)

    Sudare cu arc electric (incluzndi tierea cu plasm)

    30-35 90+

    ndeprtarea de material(debavurare, polizare, achiere,polizare)

    25-30 90+

    Procese de achiere 55-60 90

    Procese dendoire, presare 40-50 90

    Manipulare (pick and place) 70-75 90

    Paletizare 70-75 90

    Depaletizare 65-70 90

    ROBOTICA

    Subiectele abordate in acest

  • 7/26/2019 1 Modul 1 Introducere

    88/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    semestruM1: Introducere in domeniul roboticii industriale

    M2: Manipularea in aplicaii industriale robotizate

    M3: Tipuri de efectori finalifolosii in aplicaii industriale robotizate

    M4: Asamblarea in aplicaii industriale robotizate

    M5: Senzori folosii aplicaii industriale robotizate

    M6: Sudarea in aplicaii industriale robotizate

    M7: Ambalarea si paletizarea in aplicaii industriale robotizate

    M8: Alimentarea si evacuarea masinilor unelte in aplicaii industriale robotizate

    M9: Robotii industriali implementati in aplicatii agro-alimentare

    M10: Roboti industriali implementati in aplicatii speciale

    M11: Fabricaia automatizata si robotizata

    M12: Justificarea economica a robotizrii proceselor industriale

  • 7/26/2019 1 Modul 1 Introducere

    89/94

  • 7/26/2019 1 Modul 1 Introducere

    90/94

    ROBOTICA

  • 7/26/2019 1 Modul 1 Introducere

    91/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Control Systems Sensors and Actuators Automated Machine Tools Industrial Robotics

    Logic Controllers Handling Systems Storage Systems Identification Systems

    Manufacturing Cells Robotic Assembly Lines Flexible Manufacturing Systems

    ROBOTICA

    Rezumat

  • 7/26/2019 1 Modul 1 Introducere

    92/94

    Robotizarea Fabricatiei I Conf. Dr. Ing. Bogdan MOCAN

    Rezumat

    Introducere in robotica industriala

    Spatiul de lucru al robotilor, TCP-ul robotilor, modulul

    de generare a traiectoriilor, modulul de orientare

    Pozitii de singularitate ale robotilor industrialiarticulati

    Aplicatii ale robotilor industriali

  • 7/26/2019 1 Modul 1 Introducere

    93/94

  • 7/26/2019 1 Modul 1 Introducere

    94/94


Recommended